

THE UNITED REPUBLIC OF TANZANIA

FERTILITY AND NUPTIALITY LEVELS AND PATTERNS IN TANZANIA

The United Republic of Tanzania

FERTILITY AND NUPTIALITY LEVELS AND PATTERNS IN TANZANIA

Ministry of Finance

Tanzania

and

Office of the Chief Government Statistician Presidents' Office - Finance and Planning Zanzibar

May 2025

UN MIGRATION

The Republic of Korea People's Republic of China

Citation:

National Bureau of Statistics (NBS) and Office of the Chief Government Statistician, (OCGS) (2025). Fertility and Nuptiality Levels and Patterns in Tanzania. Ministry of Finance, Dodoma and President's Office – Finance and Planning, Zanzibar, The United Republic of Tanzania.

MAP 1: UNITED REPUBLIC OF TANZANIA, ADMINISTRATIVE BOUNDARIES

Foreword

The 2022 Population and Housing Census (PHC) for the United Republic of Tanzania had its reference as the midnight of the 22nd/23rd August 2022. This was the Sixth and the first digital Census after the Union of Tanganyika and Zanzibar in 1964. Other post

union censuses were carried out in 1967, 1978, 1988, 2002 and 2012. The Sixth Phase Government of Tanzania under the leadership of Her Excellency Dr. Samia Suluhu Hassan, and the Eighth Phase Government of Zanzibar under the leadership of Dr. Hussein Ali Mwinyi, have fulfilled their obligation of conducting the 2022 PHC according to the United Nations Principles and Recommendations for the Population and Housing Census. We owe them much appreciation for their commitment and support during Census implementation.

The 2022 PHC was conducted in accordance with the Statistics Act Cap 351, which mandates the Government of the United Republic of Tanzania to conduct Population and Housing Census every ten years. It also followed the United Nations Principles and Recommendations for conducting the 2020 Round of Population and Housing Census, including adoption and use of advanced Information and Communication Technology (ICT) at all stages during Census implementation. Indeed, the country's decision to use advanced technology to capture data during cartographic mapping, enumeration, data transmission, and processing made the 2022 PHC the first ever digital census to be conducted in Tanzania.

The 2022 PHC results are to be aligned and integrated into national and sustainable development plans in order to increase awareness and transparency of resources allocation at all administrative levels, basing on the actual population. In addition, the results will be used by the Government of United Republic of Tanzania and development partners in monitoring and evaluating various national, regional and international development frameworks including the Tanzania Development Vision 2050 and Zanzibar Development Vision 2050; the Third National Five -Year Development Plan 2021/22 - 2025/26 and Zanzibar Development Plan 2021/22 - 2025/26; the East African Community Vision 2050; Southern and African Development Community Vision 2050 and the African Development Agenda 2063.

Results will also enable the country to evaluate the progress in implementing Sustainable Development Goals (SDG); particularly goals that aim at achieving equality and poverty eradication by 2030. The census data will also provide basis for the computation of several development indicators such as enrolment and literacy rates, infant and maternal mortality rates, unemployment rate and others.

The Fertility and Nuptiality Levels and Patterns report in Tanzania is the eighth in a series of planned 2022 PHC publications. The major reports that have been produced previously are (i) Administrative Units Population Distribution Reports, (ii) Age and Sex Reports and (iii and iv) Constituency Population Distribution Report, produced in two volumes, one representing the United Republic of Tanzania and the other Tanzania Zanzibar. Other reports include the (v and vi) National and Regional Basic Demographic and Socioeconomic Profiles and (vii) building census reports. The first two major reports are in three volumes for the United Republic of Tanzania, Mainland Tanzania and Tanzania Zanzibar. The main purpose of this report is to provide in depth analysis of nuptiality and fertility from the 2022 PHC.

The success of 2022 PHC depended on the cooperation and contributions from the Government, specifically Census Committees from national to the lowest administrative level. These include the National Central Census Committee; National Census Advisory Committee; National Census Technical Committee; Census Committees at regional, district, wards, village/mtaa and hamlet. There were also forums from Non-States Actors including Collaborators Forum, Private Sector, various institutions and the public at large.

A word of thanks goes to Government leaders at all levels, particularly, Minister for Finance; Minister of State - President's Office, Finance and Planning, Zanzibar; members of parliament; members of the house of representatives; councillors/shehas; regional and district census committees chaired by regional and district commissioners of respective areas; census coordinators (National and Zanzibar); regional and district census coordinators; supervisors; enumerators; local leaders and all respondents (heads of households, members of households and other individuals).

Special gratitude is extended to the following Development Partners:- United Nations Population Fund (UNFPA); World Bank (WB); United Nations Children's Fund (UNICEF); UN-Women; International Organization for Migration (IOM); United States Agency for International Development (USAID); Foreign, Commonwealth and Development Office (FCDO); United States Census Bureau (USCB), The Republic of South Korea, The People's

v

Republic of China and other Development Partners for providing equipment, expertise, training and financial support in making the 2022 Population and Housing Census a success. We also thank religious, traditional and political leaders, non-governmental organization leaders, the media and all citizens and non-citizens in general for their participation and contributions in the successful implementation of the Census.

Special thanks also goes to Honourable Anne Semamba Makinda - Census Commissar for Mainland Tanzania and Former Speaker of the National Assembly; and Honourable Ambassador Mohamed Haji Hamza - Census Commissar for Tanzania Zanzibar, for their effective leadership and management in educating and sensitizing all citizens and noncitizens to participate in the 2022 Population and Housing Census thus, resulting in enhanced quality, smooth and timely execution of the Census exercise.

Last but not least, we acknowledge the unprecedented efforts and commitment of the management and staff of the NBS under the leadership of Dr. Amina Msengwa, the Statistician General; and staff of the Office of the Chief Government Statistician, Zanzibar under the leadership of Mr. Salum Kassim Ali; Chief Government Statistician; Dr. Albina Chuwa, former Statistician General, staff from the Ministry of Lands, Housing and Human Settlements Development; Ministry of Information, Communication and Information Technology; as well as other Government officials who worked tirelessly in ensuring that the 2022 Population and Housing Census was implemented successfully.

Kassim Majaliwa Majaliwa (MP) Prime Minister of The United Republic of Tanzania

Hemed Suleiman Abdulla (MRC) Second Vice President of Zanzibar

Acknowledgement

The Government of the United Republic of Tanzania through Ministry of Finance in coordination of the National Bureau of Statistics (NBS) and Office of the Chief Government Statistician, Zanzibar (OCGS) conducted the 2022 Population and Housing Census (PHC) to provide necessary information for policy formulation, planning, monitoring and evaluation of development processes. The 2022 Census was conducted alongside other national exercises of Building Census and the National Physical Addressing. The Population Census collected detailed information on demographic, social and economic data for policymaking, planning and administration. Information on the size, distribution and characteristics of a country's population is essential for describing and assessing its economic, social and demographic circumstances and for developing sound policies and programmes aimed at fostering the welfare of a country and its population.

The Tanzania Building Census (TBS) collected information on the building structures for development of a basis for planning housing and human settlement programmes and policies, public and private sector studies of urban and other non-agricultural land use, evaluation of the adequacy of housing stock and assessment of the need and market for new housing, and studies of the living conditions of the homeless and those living in temporary or substandard housing. The 2022 Census also collected information on physical addresses to facilitate planning and enabling digital transformation in various aspects.

This report presents a comprehensive analysis of fertility and nuptiality levels and patterns in Tanzania, focusing on their implications for population dynamics and socio-economic planning. It provides detailed statistics on key indicators, including nuptiality patterns, fertility levels and patterns across various demographic and socio-economic groups. The report also examines historical trends, differentials, and the influence of factors such as education, urban-rural residence on nuptiality and fertility behaviour. The analysis leverages data from national surveys, previous censuses and other reliable sources to offer insights into how these patterns vary over time and across regions. Additionally, it investigates disparities among rural and urban areas and regions, such as age cohorts, and uncovers the underlying drivers of fertility and nuptiality trends.

The findings aim to support evidence-based decision-making by policymakers, researchers, and planners. By identifying key determinants and highlighting actionable trends, the report equips stakeholders to design targeted interventions that address population challenges, enhance reproductive health services, and promote gender equality. Ultimately, this work

seeks to contribute to achieving national development goals and improving the well-being of Tanzanians.

We therefore express our sincere appreciation to all experts who have put their time and efforts to produce this report. In particular we would like to thank Prof. Akim Mturi, Internal Technical Advisor responsible of overseeing writing of the monograph; Ms. Edith Mbatia, Lead Author of the Monograph; Dr. Ruth Davison Minja, Director of Population Census and Demographic Statistics; Fahima Mohamed Issa, Director of Social Statistics Department, OCGS; Seif Ahmad Kuchengo, Manager for Population Census and Vital Statistics and the National Census Coordinator; Abdul-Majid Jecha Ramadhan, Tanzania Zanzibar Census Coordinator; Steven Lwendo, Information Technology Experts; the National Census Technical Team; Statisticians; Demographers; and Geographic Information System officers for their commitment which led to successful completion of this report.

Our appreciation is as well extended to regional and district supervisors, enumerators and field supervisors as well, the media and all professionals for their dedicated work. Certainly, without their commitment and dedication, the Census would not have been successful. We would also like to thank the public for their cooperation during the entire period of the Census.

Dr. Amina Suleiman Msengwa Statistician General National Bureau of Statistics

Balumbmassego

Salum Kassim Ali Chief Government Statistician Office of the Chief Government Statistician, Zanzibar

Executive Summary

Fertility and Nuptiality Levels and Patterns in Tanzania provides a detailed analysis on fertility and nuptiality status as collected from the Census 2022. The report summary is divided into seven sections. Section one is on the Fertility Levels and Trends. The findings show the Total Fertility Rate (TFR) in Tanzania is 4.6 children per woman. This means that, at current fertility levels an average woman residing in Tanzania would have given birth to 4.6 children by the end of reproductive age. Fertility shows a standard pattern observed in many developing countries. In 2022 PHC the Age-Specific Fertility Rate (ASFR) show "broad peak" of fertility age pattern. The TFR level decreased from 6.9 recorded in the 1978 Census which is equivalent to a reduction of 2.3 children per woman for the past 44 years. Fertility is slightly higher in Tanzania Zanzibar (4.7 children per woman) than in Mainland Tanzania (4.6 children per woman).

Results show the Adolescent Fertility is about 77 births per thousand women aged 15 - 19 years. Adolescent fertility contributed to 1.7 percent of the total TFR in the country. Fourteen percent of adolescents had at least one birth at the time of the Census in 2022. Adolescent fertility is low in Tanzania Zanzibar with 25.4 births per thousand women aged (15 - 19) years) as compared with 78.5 births per thousand women aged 15 - 19 years in Mainland Tanzania. Early marriage seems to be a strong factor underlying adolescent fertility. The relative contribution of adolescent fertility was highest in Ruvuma, Mtwara, Songwe, Lindi, Tabora, Morogoro and Dodoma regions, where early marriages are common.

Findings further shows fertility differentials in Tanzania such as residence, marital status, education level and occupation differ across socio-economic aspects. The TFR for Tanzania is 5.3 children per woman in rural areas and 3.8 children per woman in urban areas. TFR is highest in Kaskazini Pemba Region (6.5 children per woman) and lowest in Dar es Salaam Region (3.1 children per woman). In addition, fertility is negatively associated with the educational attainment of the mother, decreasing from 5.5 children per woman for women with no education or attended pre-primary education only to 2.3 children per woman for women with tertiary education or above. Women engaged in agricultural activities (farmers, livestock keepers and fishers) have a relatively higher TFR (4.9) compared with women engaged in clerks with TFR of 1.6. Fertility levels are low among women engaged in occupations that require professional training or other skills.

Results on Marital Status revealed marriage is almost universal in Tanzania where the percentage of the population still single is only 3.5 percent for males and 4.1 percent for females at the age 60 years and above. Over fifty percent of the population aged 15 years

and above of both males and females were either married or living together at the time of the Census. More than sixty-two-point five percent (62.5%) of women living in rural areas are married compared to fifty-point nine percent (50.9%) of those living in urban areas. There is also a difference in the percentage of married males living in rural and urban areas (58.1% and 51.7% respectively). Widowhood increases with age irrespective of sex, but with higher proportions among females. The proportions of widowed males in age groups 50-54 years, 55-59 years and 60 years and above are 2%, 3% and 8.8% respectively. The proportions of widowed females in corresponding ages are 15.0 percent, 21.7 percent and 47.6 percent, respectively. The percentage of divorced female population aged 15 years and above (4.7%) is almost twice that of the male population (2.5%). The proportion of females in Tanzania Zanzibar who are divorced is higher (8.1 percent) than that for Mainland Tanzania (4.6%). It should be noted that in polygamous marriages the divorce of one or more wives does not categorize the husband as divorced if still living with other wife (wives).

Results on Age at First Marriage indicated males marry at a relatively older age as compared to females. The Singulate mean age at first marriage (SMAM) for males is 26.4 years compared with 22.1 years for females. On average, the mean age at first marriage is 24.1 years and is slightly higher in urban areas (25.9 years) than in rural areas (22.8 years). SMAM remained almost same in 2012 and 2022 Censuses. Dar es Salaam region has the highest mean age at first marriage (29.2 years for males and 25.7 years for females) followed by Kilimanjaro region (29.0 years for males and 24.5 years for females) and Mjini Magharibi region (28.1 years for males and 24.5 years for females). The region with the lowest SMAM is Rukwa (23.8 years for males and 20.9 years for females).

Findings show the Net Nuptiality Life average expected years of single life remaining before marriage in Tanzania at age 15 is 10.6 years for males and 8.2 years for females. The average expected years of single life remaining before marriage at age 15 is higher (11.4 years) for males in Zanzibar compared with those in Mainland Tanzania (10.6 years).

Additionally, with regard to Population of Childless Women results show more than five percent (5.2%) of the female population aged 45 - 49 years were childless. The percentage of childless women in the 45-49 age group is higher in Tanzania Zanzibar (7.1%) compared with Mainland Tanzania (5.1%). Urban areas have a higher proportion (6.2%) of female population aged 45-49 years who were childless compared with rural areas (4.6%).

Summary of Key Indicators; Tanzania, 2022 PHC

Region	TFR	Childless Women (45 to 49 Years) (%)	Adolescent Fertility (Births per 1000 Women)
Tanzania	4.6	5.2	76.5
Rural	5.3	4.6	95.3
Urban	3.8	6.2	45.4
Mainland Tanzania	4.6	5.1	78.5
Dodoma	4.7	3.6	95.2
Arusha	4.6	4.5	59.9
Kilimanjaro	3.7	4.6	44.0
Tanga	4.8	3.3	72.3
Morogoro	4.2	5.3	85.3
Pwani	3.7	5.3	54.4
Dar es Salaam	3.1	7.0	26.0
Lindi	3.7	5.1	79.2
Mtwara	4.2	6.3	90.0
Ruvuma	4.6	4.8	103.9
Iringa	4.1	4.6	53.7
Mbeya	3.8	4.5	69.3
Singida	5.7	3.9	87.5
Tabora	5.4	5.3	115.8
Rukwa	6.1	3.2	117.0
Kigoma	5.3	9.1	69.4
Shinyanga	5.0	5.9	97.5
Kagera	5.6	3.7	77.5
Mwanza	4.6	6.1	69.2
Mara	5.4	4.8	95.3
Manyara	6.0	4.6	90.1
Njombe	4.0	5.3	55.6
Katavi	5.6	5.9	105.8
Simiyu	6.3	4.9	96.5
Geita	5.3	5.1	91.3
Songwe	5.5	3.6	120.6
Tanzania Zanzibar	4.7	7.1	25.4
Kaskazini Unguja	4.8	10.9	26.9
Kusini Unguja	4.0	9.3	36.4
Mjini Magharibi	4.2	6.9	19.3
Kaskazini Pemba	6.5	3.7	33.9
Kusini Pemba	6.1	5.8	31.4

Table of contents

Citation:		ii
Forewor	d	iv
Acknowl	ledgement	vii
Executiv	e Summary	ix
List of F	igures	xvi
List of M	laps	xvii
List of A	ppendices	cviii
List of A	bbreviations	xix
Definitio	n of Terminologies	xxi
Chapter	One	1
Introduc	tion	1
1.1	Background on 2022 Population and Housing Census	1
1.2	Objectives of the 2022 Population and Housing Census	2
1.3	Fertility and Nuptiality Monograph: Purpose	2
1.4	Comparison of 2012 and 2022 PHC Fertility and Nuptiality Census Questions	3
1.5	Quality of Fertility and Nuptiality Data	3
1.6	Methodology	5
1.6.1	Data Collection Method	5
1.6.2	Indirect Methods of Fertility Indicators Adjustments	6
1.7	Linkage between Nuptiality and Fertility	6
Chapter	Тwo	7
Nuptialit	y Patterns	7
2.1	Introduction	7
2.2	Age-Specific Marriage Rates	8
2.3	Singulate Mean Age at First Marriage	9
2.4	Mean Age at First Birth	.12
2.5	Differentials in Marital Status	.14
2.5.1	Marital Status by Age and Sex	.15
2.5.2	Marital Status by Place of Residence	. 17
2.6	Net Nuptiality Life Tables	.19
Chapter	Three	.22
Fertility	Patterns, Levels and Trends	.22
3.1	Introduction	.22
3.2	Crude Birth Rate	.23
3.3	General Fertility Rate	.25
3.4	Total Fertility Rate	.25
3.4.1	Choice of the Method Used to Estimate TFR	.25
3.4.2	Age Pattern of Fertility	.26

3.4.3	Total Fertility Rate	27
3.4.4	Comparison of 2022 TFR levels with Other Neighbouring Countries	29
3.4.5	Fertility Trends	.30
3.5	Gross Reproduction Ratio	.32
3.6	Net Reproduction Rate	.32
Chapter	Four	35
Fertility	Differentials	35
4.1	Introduction	35
4.2	Fertility by Place of Residence and Region	35
4.3	Fertility by Marital Status	.38
4.4	Fertility by Education Level	.39
4.5	Fertility by Occupation	42
4.5.1	Age-Specific Fertility Rates by Occupation of Women	42
4.5.2	Total Fertility Rate by Occupation of Women	43
4.5.3	Trends in Total Fertility Rates by Occupation of Women: 2012-2022 PHC	45
Chapter	Five	47
Adolesc	ent Fertility	47
5.1	Introduction	47
5.2	Levels of Adolescent Fertility	48
5.3	Contribution of Adolescent Fertility to Total Fertility Rate	49
5.4	Adolescent Fertility Differentials	50
5.4.1	Adolescent Fertility by Education Status	50
5.4.2	Adolescent Fertility by Place of Residence	51
5.4.3	Adolescent Fertility Rate by Marital Status	52
Chapter	Six	54
Lifetime	Fertility	54
6.1	Introduction	54
6.2	Measurement of Lifetime Fertility	55
6.3	Parity Distribution	55
6.4	Parity Progression Ratios	56
6.5	Population of Women who are Childless	58
6.6	Trend of Childless Women in the past decade	60
Chapter	Seven	61
Summai	ry, Conclusions and Policy Recommendations	61
7.1	Introduction	61
7.2	Nuptiality	61
7.3	Fertility Patterns, Levels, and Trends	62
7.4	Fertility Differentials	63
7.5	Adolescent Fertility	.64

7.6	Lifetime Fertility	65
7.7	Existing Policy Gaps on Fertility Management in Tanzania	65
7.8	Policy Recommendations	66
7.8.1	Policy Recommendations for addressing the TFR	66
7.8.2	Policy Recommendations to reduce the increasing percentage of Childless Women	67
Referen	ces	69
Appendi	ces	72

List of Tables

Table 2. 1:	Age-Sex Specific Marriage Rate Per 1,000 Population for Population Aged 15 Years and Above
	by Five Years Age Group, Place of Residence and Sex: Tanzania, 2022 PHC9
Table 2. 2:	Singulate Mean Age at First Marriage by Sex and Average Age at First Birth by Place of
	Residence13
Table 2. 3:	Percentage Distribution of Population Aged 15 Years and Above by Marital Status and Sex15
Table 2. 4:	Percentage of Distribution of Population Aged 15 Years and Above by Sex and Marital Status 15
Table 2. 5:	Percentage Distribution of Population Aged 15 Years and Above, by Age, Sex and Marital
	Status16
Table 2. 6:	Percentage Distribution of Population Aged 15 Years and Above by Sex, Marital Status and
	Rural-Urban Residence
Table 2. 7:	Percentage Distribution of Never Married Population Aged 15 Years and Above by Five Years
	Age Groups, place of Residence and Sex18
Table 2. 8:	Percentage Distribution of Never Married Population Age 15 and Above by Five Years Age Group
	19
Table 2. 9:	Summary of the Net Nuptiality Life Tables
Table 4.1:	Estimated Total Fertility Rate by Region; Tanzania, 2012 and 2022 PHCs37
Table 5.1:	Adolescent Fertility Rate by Region and Place of Residence; Tanzania 2022 PHC49
Table 5.2:	Percentage of Adolescents with at Least One Birth by their Education Attainment; Tanzania,
	2022 PHC51
Table 5.3:	Percentage of Adolescents with at Least One Birth by Education Attainment of the Household
	Head; Tanzania, 2022 PHC51
Table 5.4:	Percentage Distribution of Adolescents with at Least One Birth by Place of Residence;
	Tanzania, 2022 PHC52
Table 6.1:	Percentage Distribution of Women Five year's Age group 15 - 49 by Total Children Ever Born;
	Tanzania Rural, 2022 PHC56
Table 6.2:	Percentage Distribution of Women Five year's Age group 15 - 49 by Total Children Ever Born;
	Tanzania Urban, 2022 PHC56
Table 6.3:	Parity Progression Ratios by Age, Residence; Tanzania, 2022 PHC57
Table 6.4:	Percentage Distribution of Childless Women Aged 45 to 49 by Place of Residence; Tanzania,
	2022 PHC
Table 6.5:	Percentage Distribution of Childless Women Aged 45 to 49 by Place of Residence; Tanzania,
	2012 and 2022 PHC60

List of Figures

Figure 1.1:	Tanzania's Population since 1967 - 20221
Figure 2.1:	Singulate Mean Age at First Marriage (in years) by Place of Residence and Sex; Tanzania, 2022 PHC
Figure 2.2:	Singulate Mean Age at First Marriage by Sex; Tanzania, 1978 – 2022 PHCs
Figure 2.3:	Expected Average Years to Marriage 2012 and 2022 PHCs
Figure 3.1:	Age-Specific Fertility Rates; Tanzania, 2002-2022 PHCs
Figure 3.2:	Estimated Total Fertility Rates for Tanzania, Mainland Tanzania and Tanzania
	Zanzibar; 1967 – 2012 PHCs
Figure 4.1:	Average Number of Children Ever Born by Marital Status; Tanzania, 2022 PHC 39
Figure 4.2:	Age-Specific Fertility Rates by Education Level; Tanzania, 2022 PHC
Figure 4.3:	TFR by Education Level Attained; Tanzania, 2022 PHC
Figure 4.4:	Trend of TFR by Education Level Attained; Tanzania, 2012 and 2022 PHCs
Figure 4.5:	Age-Specific Fertility Rates by Occupation Categories; Tanzania, 2022 PHC
Figure 4.6:	Total Fertility Rates by Occupation of Women; Tanzania, 2022 PHC
-	Trend of Total Fertility Rates by Occupation of Woman; Tanzania, 2012 and 2022 PHCs
Figure 4.8:	Trend of Total Fertility Rates by Occupation of Woman; Mainland Tanzania, 2012 and 2022 PHCs
Figure 4.9:	Trend of Total Fertility Rates by Occupation of Woman; Tanzania Zanzibar, 2012 and 2022 PHCs
Figure 6.1:	Percentage Distribution of Childless Women Aged 45 to 49 by Place of Residence;
	Tanzania, 2022 PHC60

List of Maps

Map 1: Uni	Map 1: United Republic of Tanzania, Administrative Boundariesi				
Map 2.1:	Singulate Mean Age at First Marriage in Years by Region; Tanzania, 2022 PHC 11				
Map 3.1:	Adjusted Total Fertility Rates by Region; Tanzania, 2022 PHC29				
Map 5.1:	Percentage Contribution of Adolescent Fertility to TFR by Region; Tanzania, 2022 PHC				

List of Appendices

Appendix 1:	List of Contributors	72
Appendix 2:	Questionnaires	74
Appendix 3:	Methodology for Estimating Fertility Data	92
Appendix 4: Me	easures of Nuptiality Estimates	. 116

List of Abbreviations

AFR	Adolescent Fertility Rate
ASMRs	Age Specific Marriage Rates
ASFR	Age-Specific Fertility Rate
CBR	Crude Birth Rate
CEB	Children Ever Born
CFR	Completed Fertility Rate
CMR	Crude Marriage Rate
CWR	Child Woman Ratio
DHS	Demographic and Health Survey
EA	Enumeration Area
EAC	East African Community
FLE	Family Life Education
GFR	General Fertility Rate
GMR	General Marriage Rate
GRR	Gross Reproduction Rate
MDGs	Millennium Development Goals
MKUZA	Mpango wa Kupunguza Umasikini Zanzibar
NBS	National Bureau of Statistics
NHIF	National Health Insurance Fund
NSGRP	National Strategy for Growth and Reduction of Poverty
NRR	Net Reproduction Rate
OCGS	Office of Chief Government Statistician
OMR	Optical Mark Reader
PHC	Population and Housing Census

PPR	Parity Progression Ratio
RLS	Reproductive Life Span
SMAM	Singulate Mean Age at Marriage
TDHS-MIS	Tanzania Demographics and Health and Malaria Indicator Survey
TFR	Total Fertility Rate
THMIS	Tanzania HIV/AIDS and Malaria Indicator Surveys
UN	United Nations
UNDP	United Nations Development Programme
UNFPA	United Nation Population Fund
UNICEF	United Nations Population Fund
URT	United Republic of Tanzania
USAID	United States Agency for International Development
WHO	World Health Organization
ZSGRP	Zanzibar Strategy for Growth and Reduction of Poverty

Definition of Terminologies

Adolescent Fertility Rate is number of births per 1,000 women ages 15-19.

Age is number of years one lived as at last birthday in reference to the census night.

Age Specific Fertility Rate is calculated as number of live births per 1,000 women within a specific age group in a year

Crude Marriage Rate (CMR) measures the incidence of marriage defined as the marriages per one thousand of the total population.

Childlessness is the condition of having no children.

Child Woman Ratio (CWR) is a number of children below the age of five years per 1,000 women in the population (15-49 age).

Crude Birth Rate (CBR) is a demographic indicator that measures the number of live births occurring in a population during a specific period, normally one year, per 1,000 people in a total population.

Divorced Persons are persons who were once married but marriages were permanently terminated and have not remarried. Note that in polygamous marriages the divorce of one or more wives does not categorize the husband as divorced if still living with other wife (wives).

Fecundity: a biological capacity, of a woman, a man or a couple, to produce live birth.

Fertility refers to a number of births a woman can have.

General Fertility Rate (GFR) is defined as a number of live births per 1,000 women aged 15-49 years in a population per year.

General Marriage Rate (GMR) is a number of marriages per one thousand of the marriageable age population. marriageable

Gross Reproduction Ratio (GRR) It is the average number of daughters that would be born to a woman (or a group of women) during her lifetime if she passed through her childbearing years conforming to the age specific fertility rates of a given year.

Live Birth is defined as a complete expulsion or extraction of a product of conception from its mother, irrespective of duration of pregnancy, which after separation, breathes or shows any other evidence of liveliness.

Mean Children Ever Born (MCEB) is the mean number of children born alive to an age or age group of women.

Natality: Natality expresses the frequency of births in a population.

Never Married: Persons who remained single throughout their lives excluding persons who have lived with another person and now living alone.

Net Reproduction Rate (NRR) is average number of daughters who could be born to a female (or a group of females) through lifetime conforming to the age-specific fertility and mortality rates of a given year.

Nuptiality refers to the frequency, patterns, and characteristics of marriage within a population.

Parity is the number of children born alive to a woman.

Parity Progression Ratio (PPR) is the probability of having another child given that the mother has reached certain parity.

Total Fertility Rate (TFR) is the average number of children that would be born to a woman during childbearing period if she were to pass through all her childbearing years conforming to the age-specific fertility rates of a given year.

Chapter One Introduction

1.1 Background on 2022 Population and Housing Census

National Bureau of Statistics (NBS), in collaboration with Office of the Chief Government Statistician (OCGS), Zanzibar, conducted population and housing censuses (PHC) in the United Republic of Tanzania (URT) in the year 2022, in accordance with the Statistics Act CAP 351, requiring a census to be conducted in every ten years. This is the sixth Census since the established Union of Tanganyika and Zanzibar in 1964. The Census is conducted in accordance with international standards in particular; the United Nations Principles and Recommendations for Population Counts. In the URT, previous censuses were conducted in the years 1967, 1978, 1988, 2002 and 2012.

The Census referenced as the night of 22nd/23rd August 2022, was undertaken on a *de-facto* basis. Unlike the previous censuses, the 2022 PHC enumerated people basing on place of residence on the census night. All persons found in the country were enumerated, regardless of nationalities or citizenship. However, the enumeration planned for seven days; took nine days. PHC 2022 applied mobile technology in data and information collection which makes it the first digital census in Tanzania.

The censuses show that Tanzania's population increased from 12.3 million in 1967 to 61.7 million people in 2022 (Figure 1.1). Also, the average annual population growth rate of Tanzania increased from 2.7 percent in 2002-2012 to 3.2 percent in 2012-2022, intercensal periods.

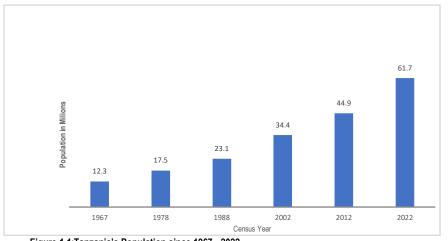


Figure 1.1:Tanzania's Population since 1967 - 2022

1.2 Objectives of the 2022 Population and Housing Census

The main objective of 2022 PHC is to provide information to the government on population size, distribution, composition and other social-economic characteristics as well as housing conditions. The referred Census is envisioned to improve access to timely, relevant, current and reliable data that can influence policy formulation, development planning, evidence-based decision making, population and socio-economic programmes monitoring and evaluating and quality services delivery.

Specific objectives of the Tanzania 2022 PHC are to:

- a) Enhance availability and accessibility of accurate, timely and reliable data on demographic, socio-economic and environment characteristics;
- b) Promote information and knowledge management of socio-economic, demographic characteristics, environment, patterns and trends in population growth;
- c) Promote use of disaggregated socio-economic, demographic and environment data from lower administrative levels;
- d) Enhance NBS and OCGS's capacity in carrying out population and housing census and other statistical data; and
- e) Establish a comprehensive buildings and National Physical Addresses database that enables evidence-based decisions as a key tool for enhancing access to social services, expansion of tax base and quality of development programmes in general.

1.3 Fertility and Nuptiality Monograph: Purpose

This monograph sought to determine levels, patterns, trends of nuptiality and fertility in Tanzania. Analysis of nuptiality levels and patterns bases on proportions of marital status categories assessed in the 2022 census. Fertility is one of the key three components of population change; the other two being mortality and migration. This is an analysis using measurements or indices of fertility levels and trends, including: average parities, Total Fertility Rate (TFR), Age-Specific Fertility Rate (ASFR), Crude Birth Rate (CBR) and Age Specific Parity. Fertility differentials (FD) are based on respondent's place of residence, marital status, education levels and occupation. Indirect techniques are used to adjust some of the measurements and indices to reduce substantial inherent errors in direct fertility levels and trends estimation.

1.4 Comparison of 2012 and 2022 PHC Fertility and Nuptiality Census Questions

The 2022 PHC used more questions in nuptiality and fertility than the 2012 Census. In measuring nuptiality and fertility, categories on marital status were the same. Regarding fertility, questions on children ever born were the same while current fertility had one question in 2022 compared with the two questions in that of 2012. The questions in the 2012 Census were: how many male/female children were born alive to (Name) in the last 12 months and how many male/female children who were born alive in the previous 12 months still alive. While in 2022 the question asked was how many male/female children were born alive in the previous 12 months attract in the 12 months preceding the Census. The 2022 PHC used six marital status categories: Never married, married, living together, divorced, separated and widowed. The question asked in the 2022 PHC was: "What is current marital status of [NAME]?" (See Appendix 2 for more details).

Another difference related to questions between the two Census is data for Age at First Marriage (AFM) and Age at First Birth (AFB) were not collected in the 2022 PHC compared to the 2012 PHC. The lack of AFM and AFB data may have significant consequences in various demographic, public health, and socioeconomic contexts. AFM often correlates with interruption in girls' education. Without such data, programmes aiming at improving educational level attainment and delay marriage might become less effective. On the other hand, it is difficult to analyse fertility timing, which is critical for understanding population growth and reproductive behaviour without AFB data.

1.5 Quality of Fertility and Nuptiality Data

Like other developing countries, census data in Tanzania, has coverage and content errors, varying both in nature and magnitude from one region to the other. Coverage errors result from omission of certain pockets of population, while content errors pertain to misreporting or misclassification. Common census problems in developing countries such as over/under reporting of live births by younger women, under/over-reporting of live births by older women and misreporting the other type of events were found and had to be managed accordingly in this analysis, with more efforts on ensuring generation of complete and accurate data on fertility and nuptiality reports.

Fertility estimates in this monograph is based on current and lifetime fertility data, while nuptiality estimates are on marital status data. Errors that affect current fertility data include age misreporting, omission of births, incorrect recent births dates or reference period error and use of short period creating uncertainties in reported fertility levels. Errors affecting lifetime fertility data include possible misstatement of women age especially in early lifetime fertility, under-reporting of births to women above 35 years and unmarried adolescents who dislike being reported as mothers. Other errors in reported births are omission of births to older women mainly due to memory lapse, especially for those births that ended with an early child death. Older women also tend to forget to list in the household roster children born to another husband or man or those who left household soon after birth or not present at home for various reasons. Errors in such data may also occur due to inclusion of still births and late foetal deaths. There are also other factors that may inflate number of births, for example the inclusion of step or adopted children or grandchildren, dead children and parity of a sizeable proportion of women who did not disclose parities or a dash or a space left blank (Kumar and Yadav, 2024; United Nations {UN}, 1983).

Age and sex structure of a population is also important in explaining levels, patterns and trends of fertility and nuptiality. Hence, quality of age data is assessed mainly by examining the extent of age misreporting and age heaping by women of reproductive age. Furthermore, examining average parities, parity distributions and proportion of childless women would provide further insights in quality of various cohorts fertility data reporting. On the other hand, individual perceptions influence nuptiality data quality. Therefore, validation of such data is embedded in cultural norms and practices that determines respondent's perceptions and engagement into marital status and conditions. Given the possibilities of these distortions, caution needs to be taken in interpreting reported data. In this situation, indirect techniques shouldn't be avoided.

Nuptiality data shows patterns in marriage, divorce, and remarriage. The changes in marital behaviour may be driven by factors like extra marital affairs commonly known as "nyumba ndogo", which tend to influence marriage stability, divorce rates, remarriage rates and general family dynamics impacting the Tanzania nuptiality data.

Extramarital affairs introduce significant uncertainty to nuptiality data by masking the true causes of marital instability and dissolution, as they are often hidden and underreported in official records and surveys. Additionally, Individuals in a society witnessing widespread extramarital affairs might have a varied value, thinking and approach to marriage. This may lead to delayed commencement of marital life particularly in youth and younger generations may opt for cohabitation than having a formal marriage leading to fewer registration of formal marriages.

4

1.6 Methodology

1.6.1 Data Collection Method

Socio-demographic data were collected to evaluate fertility levels and other general characteristics its population. Fertility data in censuses provides information on recent births (live births occurred in households in the 12 months preceding the census), and about lifetime fertility (live children ever born in the woman's reproductive life). Questions on live births in the last 12 months allow measurement of current fertility. Information on all live births (ever born children) is used to determine the past childbearing ages for women (i.e., lifetime fertility).

1.6.2 Indirect Methods of Fertility Indicators Adjustments

Fertility data collected in 2022 census was adjusted using indirect methods to estimate fertility indicators. Demographers globally have developed a set of techniques that allows indirect estimation of key fertility indicators from census and survey data. Although there are many indirect methods of estimating fertility indicators such as the Arriaga, Brass P/F ratio and Gompertz relational methods, the Arriaga method was found to be the most appropriate for determining fertility levels in Tanzania. The Brass P/F method could not be applied since fertility in Tanzania declined in recent years. The alpha and beta parameters of Gompertz relational failed to converge indicating unsuitability of the method to the Tanzania 2022 PHC data. The Arriaga fertility method was applied as it compares two or more sets of average children ever born (CEB) in estimating fertility levels. The estimates are then used to adjust observed fertility pattern in a manner like the Brass P/F ratio method. The Arriaga method used in this monograph combines the 2022 with 2012 data in considering recent decline of fertility in Tanzania. The estimation procedure of the Arriaga and other methods used are described in Appendix 3. The El-Badry correction procedure was applied before application of Arriaga method to compute the fertility indicators, to adjust for the high percentage of women with not stated parity (See details in Appendix 3).

1.7 Linkage between Nuptiality and Fertility

Analysis of nuptiality trends and differentials contribute to understanding of fertility trends and differentials since childbearing occurs within marriage mostly. Changes in fertility are conditioned usually by differences in proportions of marrying and the age at marriage. Marriage is one of the proximate determinants of fertility (Bongaarts, 1978). Nuptiality patterns are a cornerstone of fertility dynamics. Understanding the timing, prevalence and cultural context of marriage provides a crucial insight in fertility levels and trends also enables development of appropriate interventions and reproductive health policies.

Chapter Two Nuptiality Patterns

Key Points

- Marriage is still common in Tanzania. Over 95 percent of the population aged 15 years and above have ever been married in their lifetime.
- Singulate Mean Age at Marriage (SMAM) is relatively high in Dar es Salaam, Kilimanjaro, Mjini Magharibi and Iringa; but relatively low in Katavi, Tabora, Rukwa and Songwe.
- The average expected years to marriage at age 15 has remained more or less constant (10.2 years) over the 2012-2022 intercensal period, in Tanzania.
- The Law of Marriage Act (1971) allows girls to marry at 15 with parental consent and at 14 with court approval, while the legal age for boys is 18. Raising the legal age at marriage to 18 and ensuring consistent enforcement of marriage laws is critical in Tanzania. This decision, together with supportive policies in education, health and economic empowerment, can help protect children, promote gender equality and drive sustainable development.

2.1 Introduction

Nuptiality status is one of the basic population characteristics generally determined in population censuses and household surveys. Nuptiality refers to various aspects of the institution of marriage as a population phenomenon, including the rate at which it occurs, characteristics of persons united in marriage, and dissolution of such unions through divorce, separation and widowhood. The institution of marriage is therefore a milestone stage in growth of human evolution.

Analysis of nuptiality patterns is important in helping to understand the social dynamics of a society and they change over time. Indeed, marriage is a major determinant of fertility, especially in a country such as Tanzania where the majority of children are born in wedlock. Thus, knowing how many people are in union or not and at what age they tend to get married enables people to understand more about fertility. In addition, the comparison of the distribution of marital status at different periods provides information on how a society is evolving.

2.2 Age-Specific Marriage Rates

The age-specific marriage rate (ASMR) is a demographic measurement that shows the rate at which individuals in a particular age group get married within a specified period (usually a year), it's often expressed per 1,000 people in that age group. Therefore: -

$$ASMR = \frac{nM_x}{nP_x} *1000$$

Where

 nM_x = number of marriages in a year between ages x and x + n

 nP_x = number of persons in the age group (x, x + n)

However, the rate does not take into consideration the fact that married couples may not be of the same age, which is one of the shortcomings of the method. It should also be noted that since generally husbands tend to be older than the wives, the age-specific marriage rates might differ with sex. Hence it is more advisable to have an age-sex specific marriage rate.

Table 2.1 presents Age-Specific Marriage Rates by Place of Residence in the 2022 Census. Marriage rates increase with increasing age for both males and females. The table reveals that marriage rates are low in younger age groups but reach peak in 40 - 44 years' age group. Age Specific Marriage Rate for males (ASMRm) rises slowly but shows a sharp increase in 25 - 29 years' age which corresponds with average age at first marriage for male of 26 years. On the other hand, Age Specific Marriage Rate for females (ASMRf) rises sharply in the 20 - 24 age group consistent with average age at first marriage for females of 22 years. ASMRm for males reaches 746 per thousand population for those aged 60 years and above but that for women drops to 344 per thousand for the same age group. Similar patterns are observed in rural and urban areas.

Table 2. 1: Age-Sex Specific Marriage Rate Per 1,000 Population for PopulationAged 15 Years and Above by Five Years Age Group, Place of Residenceand Sex: Tanzania, 2022 PHC

Place /	Tanzania			Rural			Urban		
Residence	Both Sexes	Male	Female	Both Sexes	Male	Female	Both sexes	Male	Female
Total	511.6	502.8	519.7	557.5	539.7	574.0	440.2	445.9	434.9
15 - 19	106.7	20.9	194.7	137.1	25.9	262.0	54.1	11.1	91.7
20 - 24	382.7	229.8	522.2	491.8	312.3	658.3	247.1	125.2	355.9
25 - 29	573.1	507.3	635.8	683.1	622.9	738.9	444.5	376.2	511.6
30 - 34	684.2	679.8	688.4	743.1	742.4	743.6	608.2	603.2	613.3
35 - 39	724.8	745.2	706.2	760.9	778.6	745.6	671.7	699.6	644.0
40 - 44	730.4	774.1	690.5	753.8	792.7	720.2	692.0	745.7	638.7
45 - 49	726.2	788.0	668.9	745.5	801.6	695.4	691.9	765.1	619.6
50 - 54	702.0	790.8	621.9	716.5	803.0	641.0	673.9	768.3	583.1
55 - 59	678.7	798.7	564.5	692.0	809.3	581.9	653.7	779.2	531.1
60 and above	525.2	745.9	344.3	532.7	754.7	351.1	507.8	725.8	328.7

2.3 Singulate Mean Age at First Marriage

Age at first marriage is one of the proximate determinants of fertility. The population, in which age at first marriage is low, tends to have early childbearing and high fertility. Since there was no direct question on age at first marriage in the 2022 PHC, the mean age at first marriage was calculated using the Singulate Mean Age at Marriage (SMAM) method. The Singulate Mean Age at Marriage is defined as an average length of single life expressed in years among those who marry before age 50. Details on how SMAM is computed are presented in Appendix 4.

Table 2.2 shows results on Singulate Mean Age at first marriage, by sex and place of residence in the 2022 Census. The Singulate Mean Age in Tanzania at first marriage was found to be 24.1 years, where Mainland Tanzania had 24.1 and Zanzibar 25.6 years. The Singulate Mean Age at first marriage is higher for males (26.4 years) as compared to females (22.1 years), with a difference of 4.3 years. The results show that on the average, individuals living in urban areas get married 3 years later than those in rural areas. The Singulate Mean Age at first marriage is therefore higher in urban areas (25.9 years) than in rural areas (22.8 years).

Figure 2.1 and Map 2.1 show that there are variations in the Singulate Mean Age at first marriage across regions. Dar es Salaam region has the highest Singulate Mean Age for both males (29.2 years) and females (25.7 years), followed by Kilimanjaro (29.0 years for males and 24.5 years for females) and Mjini Magharibi (28.1 years for males and 24.5 years for females). While the region with the lowest Singulate Mean Age at first marriage is Katavi

(24.3 years for males and 19.7 years for females). Generally, regions with high singulate mean ages at first marriage have low fertility rates compared with those with low mean ages at marriage (See Chapters 3 and 4 of this Volume).

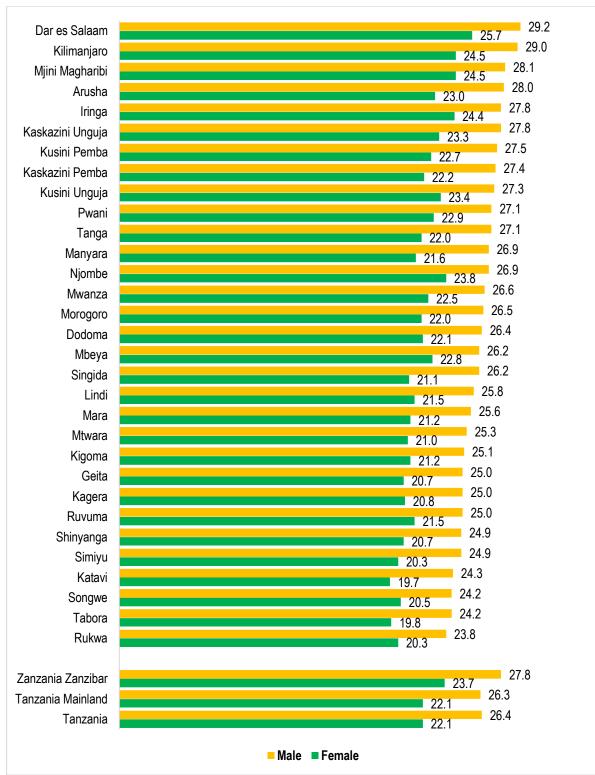
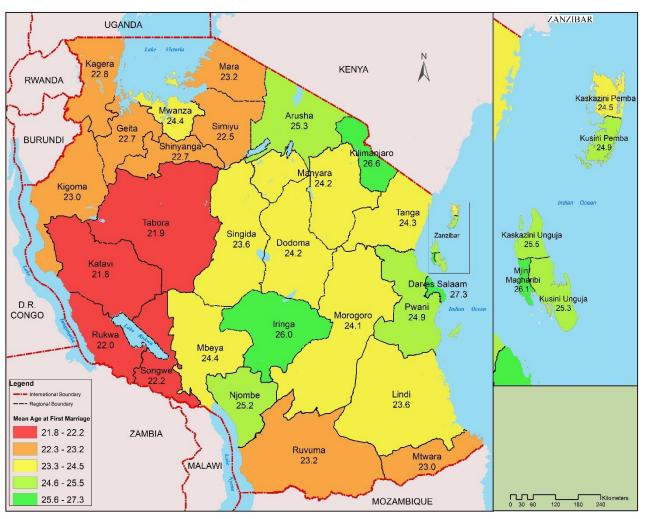



Figure 2.1:Singulate Mean Age at First Marriage (in years) by Place of Residence and Sex; Tanzania, 2022 PHC

The Singulate Mean Age at first marriage was estimated for 1978, 1988, 2002, 2012 and 2022, and the results are presented in Figure 2.2. An increase in the Singulate Mean Age at first marriage is found in both males and females during 1978 to 2022. The Singulate Mean Age at first marriage for males increased from 24.9 years in 1978 to 26.4 years in 2022, with an increase of more than one year. While the Singulate Mean Age at first marriage for females increased by three years from 19.1 years to 22.1 years during the same period.

Figure 2.2: Singulate Mean Age at First Marriage by Sex; Tanzania, 1978 – 2022 PHCs

2.4 Mean Age at First Birth

Populations with low age at first birth tend to have high fertility. The mean age at first birth was estimated using a similar approach as the one used in the calculation of Singulate Mean Age at Marriage (SMAM), since there was no direct question on age at first birth in the 2022 PHC. The mean age at first birth is defined as an average length of being childless expressed in years among those who experienced childbearing before the age 50.

Table 2.2 presents the mean age at first birth by place of residence in 2022 Census. The mean age at first birth was 23.9 years for Tanzania, 23.8 years for Mainland Tanzania and 25.8 years for Tanzania Zanzibar. The results further reveal that females in urban areas delay having first births by almost three years as compared to those in rural areas. On average, women in urban areas stay in school longer and are more informed on family planning services, which may explain the difference. Likewise, mean age at first marriage was higher in Tanzania Zanzibar (25.6 years) than in Mainland Tanzania (24.1 years). The education system in Tanzania Zanzibar, where Form Four education is compulsory enables young women to stay longer in school thus delaying childbearing. Whereas education is only compulsory to class seven in Mainland Tanzania, therefore limiting entrance of high number of girls into secondary education thus forced into childbearing at an early age.

Comparison of mean age at first marriage and mean age at first birth indicate that many females give birth before getting married. On average, females were married 2 years later after giving birth to their first births (Table 2.2). However, the difference between mean age at first marriage and the average age at first birth is less than one year in Tanzania Zanzibar.

Place of Residence	Singulate Mean Age	e at First M	Average Age at First Birth for Mothers	
Flace of Residence	Both Sexes	Male	Female	
Tanzania	24.1	26.4	22.1	23.9
Rural	22.8	25.2	20.6	22.5
Urban	25.9	27.9	24.2	25.2
Mainland Tanzania	24.1	26.3	22.1	23.8
Rural	22.8	25.2	20.6	22.5
Urban	25.9	27.9	24.2	25.1
Dodoma	24.2	26.4	22.1	28.2
Arusha	25.3	28.0	23.0	25.0
Kilimanjaro	26.6	29.0	24.5	25.5
Tanga	24.3	27.1	22.0	24.6
Morogoro	24.1	26.5	22.0	23.8
Pwani	24.9	27.1	22.9	24.7
Dar es Salaam	27.3	29.2	25.7	25.8
Lindi	23.6	25.8	21.5	24.1
Mtwara	23.0	25.3	21.0	23.9
Ruvuma	23.2	25.0	21.5	22.5
Iringa	26.0	27.8	24.4	25.2
Mbeya	24.4	26.2	22.8	24.0
Singida	23.6	26.2	21.1	23.4
Tabora	21.9	24.2	19.8	21.3
Rukwa	22.0	23.8	20.3	21.8
Kigoma	23.0	25.1	21.2	23.6
Shinyanga	22.7	24.9	20.7	21.9
Kagera	22.8	25.0	20.8	24.3
Mwanza	24.4	26.6	22.5	23.7
Mara	23.2	25.6	21.2	22.0
Manyara	24.2	26.9	21.6	23.1
Njombe	25.2	26.9	23.8	25.4
Katavi	21.8	24.3	19.7	21.3
Simiyu	22.5	24.9	20.3	21.5
Geita	22.7	25.0	20.7	22.0
Songwe	22.2	24.2	20.5	22.0
Tanzania Zanzibar	25.6	27.8	23.7	25.8

Table 2. 2: Singulate Mean Age at First Marriage by Sex and Average Age at FirstBirth by Place of Residence

Place of Residence	Singulate Mean Age	at First I	Marriage	Average Age at First Birth for Mothers
Place of Residence	Both Sexes	Male	Female	
Rural	24.9	27.3	22.7	7
Urban	26.3	28.3	24.6	26.1
Kaskazini Unguja	25.5	27.8	23.3	25.6
Kusini Unguja	25.3	27.3	23.4	25.5
Mjini Magharibi	26.1	28.1	24.5	26.0
Kaskazini Pemba	24.5	27.4	22.2	25.6
Kusini Pemba	24.9	27.5	22.7	25.9

Source: Tanzania, 2022 PHC

2.5 Differentials in Marital Status

Table 2.3 presents the marital status of persons aged 15 years and above in the 2022 PHC.

About fifty-six percent of the male population aged 15 years and above are in union (50.3% of the married males and 5.3% of males living together) which is slightly lower than that for females (52.4% of the married females and 5.6% of females living together). The proportion of people who have never been married is significantly higher among the male (39.4%) than the female population (27.1%). Most of never married persons are in younger age groups.

The proportion of married male population in Mainland Tanzania (50.2 percent) is almost the same as that for Tanzania Zanzibar (50.3%), while the proportion of married males is higher in Tanzania Zanzibar (52.4%). Results further show extremely low proportions of persons living together in Tanzania Zanzibar (0.7% for both males and females) compared with those in Mainland Tanzania (5.5% for males and 5.7% for females). The proportion of females who are divorced is higher (8.1%) in Tanzania Zanzibar than that of Mainland Tanzania (4.6%) which may be explained by the differences in religious belief and culture in Mainland Tanzania and Tanzania Zanzibar.

Marital Tanzania		Mainland	Tanzania	Tanzania Zanzibar		
status	Male	Female	Male	Female	Male	Female
Total	16,859,980	18,481,151	16,330,480	17,892,486	529,500	588,665
Never married	39.4	27.1	39.3	27.0	43.3	29.9
Married	50.3	52.4	50.2	52.3	52.4	55.6
Living together	5.3	5.6	5.5	5.7	0.7	0.7
Divorced	2.5	4.7	2.4	4.6	2.8	8.1
Separated	1.2	2.3	1.3	2.3	0.3	0.6
Widowed	1.3	7.9	1.3	8.0	0.6	5.1

Table 2. 3: Percentage Distribution of Population Aged 15 Years and Above byMarital Status and Sex

Source: Tanzania, 2022 PHC

Table 2.4 compares the percentage distribution of population aged 15 years and above by marital status in 1978, 1988, 2002, 2012 and 2022 PHCs. Major observation from the results is the patterns of males versus females. Whereas male proportions have remained almost unchanged since 1978 in all marital status categories, females show major change in never married and widowed categories. The percentage of never married females has almost doubled from 15.5 percent in 1978 to 27.1 percent in 2022 while the percentage of widowed females dropped from 9.1 percent in 1978 to 4.2 percent in 2012 and thereafter increasing to 7.9 percent in 2022. Doubling of never married females is associated, among other things, with the development in education sector whereby girls are increasingly getting equal opportunities in education and spending more years in schools compared with the past three decades.

Table 2. 4: Percentage of Distribution of Population Aged 15 Years and Above by
Sex and Marital Status

Census	Male					Female			
Year	Never married	Married	Divorced	Widowed	Never married	Married	Divorced	Widowed	
1978	33.2	61.4	3.7	1.7	15.5	69.5	5.8	9.1	
1988	38.3	57.0	3.1	1.6	21.5	63.8	6.2	8.5	
2002	39.2	56.1	3.2	1.5	24.5	60.1	6.7	8.6	
2012	38.3	56.8	3.0	1.9	33.0	58.1	4.7	4.2	
2022	39.4	55.6	3.7	1.3	27.1	58.0	7.0	7.9	

Source: Tanzania Census, 1978 to 2022 PHCs

2.5.1 Marital Status by Age and Sex

Marriage is associated with the individual's age, hence, the distribution by marital status concurrently varies with the age. The proportion of males who have never been married in the population decreases significantly from 97.7 percent for those in 15–19 age group to 3.5

percent for those aged 60 years and above. Corresponding figures for females are 80.6 and 4.1 percent respectively (Table 2.5). Like in many sub-Saharan African countries, marriage is almost universal and this is confirmed by results that show that at age 50, the percentage of the population that is still single is only 5.6 percent for males and 5.5 percent for females.

Observation on the marriage age structure shows that widowhood also increased with age irrespective of the sex, females are having higher proportions than males. For males in age groups 50-54 years, 55-59 years and 60 years and over, the proportion of the widowed is 2.0 percent, 3.0 percent and 8.8 percent, respectively. The proportion of the widowed females in the corresponding age groups is 15.0 percent, 21.7 percent and 47.6 percent, respectively. There are three factors that may explain the differences in the percentage of the widowed between the two sexes. Firstly, in many marriages, wives are younger than husbands; secondly, women on average tend to live longer than men (as presented in the Mortality Monograph) and thirdly, most widowed men re-marry after the death of wives as opposed to widowed women.

Age	Total	Never Married	Married	Living Together	Divorced	Separated	Widowed
Male Total	16,859,980	39.4	50.3	5.3	2.5	1.2	1.3
15-19	3,096,585	97.7	2.0	0.2	0.0	0.0	0.0
20-24	2,560,784	73.9	21.7	3.5	0.5	0.3	0.0
25-29	2,220,552	38.8	51.0	7.9	1.6	0.8	0.1
30-34	1,902,813	19.2	68.0	8.8	2.6	1.2	0.2
35-39	1,532,158	11.7	74.5	8.3	3.5	1.7	0.4
40-44	1,315,192	8.4	77.1	7.5	4.2	2.1	0.7
45-49	1,121,985	6.7	78.4	6.8	4.6	2.3	1.2
50-54	906,156	5.6	78.8	6.0	5.0	2.6	2.0
55-59	616,932	4.7	79.4	5.4	4.9	2.6	3.0
60 and above	1,586,823	3.5	75.4	4.5	5.0	2.7	8.8
Female Total	18,481,151	27.1	52.4	5.6	4.7	2.3	7.9
15-19	3,185,808	80.6	16.5	2.3	0.4	0.2	0.0
20-24	3,005,171	37.4	51.6	7.3	2.3	1.1	0.2
25-29	2,507,599	21.2	64.2	8.3	3.9	1.9	0.5
30-34	2,053,128	13.4	69.5	7.8	5.4	2.5	1.4
35-39	1,676,186	9.5	71.1	7.0	6.5	3.1	2.8
40-44	1,396,310	7.6	69.4	6.1	7.6	3.7	5.5
45-49	1,168,068	6.4	67.2	5.3	8.0	4.0	9.1
50-54	947,230	5.5	62.4	4.4	8.5	4.2	15.0
55-59	636,406	5.1	56.7	3.6	8.7	4.2	21.7
60 and above	1,905,245	4.1	35.4	2.1	7.3	3.4	47.6

Table 2. 5: Percentage Distribution of Population Aged 15 Years and Above, by Age,Sex and Marital Status

Source: Tanzania, 2022 PHC

2.5.2 Marital Status by Place of Residence

A higher population in rural areas is more likely to be married than those living in urban areas. Percentage of never married urban population (43.9% in males and 35.6% in females) is higher than that of rural population (36.7% in males and 21.6% in females). The marital patterns by place of residence observed are consistent with fertility patterns in chapter four. The higher proportion of never-married individuals in urban areas is a result of a complex interplay of education, economic opportunities and cultural changes that contrast sharply with rural settings. Urban environments promote individualism, financial independence, and delayed life milestones, leading to a change in traditional marriage patterns. Many societies in developing countries regard marriage as a necessity and important for reproduction and social status (Table 2.6).

Furthermore, relatively harder economic conditions in urban areas compared to rural may contribute to many persons in urban areas to remaining single. Results further show that the percentage of widowed female population (7.9%) is more than six times that of the male population (1.3%). As highlighted in Section 2.5.1 of this chapter, this is caused by several factors including a higher probability of remarrying for widowed males than females.

Sex and Marital Status		Number	Percentage			
	Tanzania	Rural	Urban	Tanzania	Rural	Urban
Male	16,859,980	10,446,522	6,413,458			
Never Married	6,645,128	3,830,770	2,814,358	39.4	36.7	43.9
Married or Living Together	9,379,961	6,065,917	3,314,044	55.6	58.1	51.7
Divorced or Separated	623,906	409,702	214,204	3.7	3.9	3.3
Widowed	210,985	140,133	70,852	1.3	1.3	1.1
Female	18,481,151	11,302,037	7,179,114			
Never Married	4,999,632	2,444,952	2,554,680	27.1	21.6	35.6
Married or Living Together	10,716,889	7,060,897	3,655,992	58.0	62.5	50.9
Divorced or Separated	1,299,023	810,877	488,146	7.0	7.2	6.8
Widowed	1,465,607	985,311	480,296	7.9	8.7	6.7

Table 2. 6: Percentage Distribution of Population Aged 15 Years and Above by Sex,Marital Status and Rural-Urban Residence

Source: Tanzania, 2022 PHC

The proportion of the population which has never married is higher in urban than in rural areas for all age groups and for both sexes. A relatively higher percentage of urban unmarried women in 25–39 years age group has a more negative impact on urban fertility compared with that of rural areas (Table 2.7).

		Percentage						
Age	Ru	ıral	Url	ban	Rur	al	Urban	
	Male	Female	Male	Female	Male	Female	Male	Female
Total	10,446,522	11,302,037	6,413,458	7,179,114	36.7	21.6	43.9	35.6
15-19	2,061,774	1,964,852	1,034,811	1,220,956	97.2	74.6	98.8	90.1
20-24	1,516,675	1,730,685	1,044,109	1,274,486	66.7	26.1	84.5	52.7
25-29	1,252,923	1,400,168	967,629	1,107,431	30.4	13.2	49.5	31.2
30-34	1,085,036	1,171,571	817,777	881,557	15.0	8.7	24.8	19.8
35-39	897,085	995,083	635,073	681,103	9.6	6.2	14.6	14.2
40-44	791,916	855,123	523,276	541,187	7.2	5.3	10.2	11.3
45-49	702,527	748,300	419,458	419,768	5.9	4.7	8.0	9.6
50 and above	2,138,586	2,436,255	971,325	1,052,626	4.0	4.0	5.0	6.2
Cource: Tanz								

Table 2. 7: Percentage Distribution of Never Married Population Aged 15 Years and
Above by Five Years Age Groups, place of Residence and Sex

Source: Tanzania, 2022 PHC

The results reveal changing marital patterns in Tanzania between 1988 and 2022, highlighting delayed marriage across age groups and a narrowing gender gap in early marriages. Among youth (15-19 years), the percentage of never-married individuals is consistently high, particularly for males, increasing from 95.9% in 1988 to 97.7% in 2022. For females, this value rose from 70.6% in 1988 to 80.6% in 2022, reflecting reduced early marriages likely driven by educational reforms and awareness campaigns. In young adulthood (20-24 years), while the percentage of never-married males remained stable (around 70%), females saw a significant increase from 25.9% in 1988 to 46.2% in 2012, followed by a slight decline to 37.4% in 2022, indicating a period of delayed marriage followed by potential stabilization (Table 2.8).

For older age groups (25 years and above), a gradual increase in never-married individuals is observed, especially up to 2012, before stabilizing or slightly declining by 2022. Males consistently report higher percentage of never-married status than females, reflecting traditional norms of later male marriage. However, among women, there was a notable rise in never-married percentage across all age groups, peaking in 2012. By 2022, these trends show some reversal, especially among females aged 25-34, suggesting evolving societal norms and economic factors influencing marriage decisions. Overall, the data reflect shifts toward delayed and potentially declining marriage rates in Tanzania, with significant gender and age dynamics influenced by cultural, economic, and policy changes (Table2.8).

٨		Ма	le	Male			Female		
Age	1988	2002	2012	2022	1988	2002	2012	2022	
Total	38.3	39.2	38.3	39.4	21.5	24.5	33.0	27.1	
15-19	95.9	96.5	92.2	97.7	70.6	74.8	83.3	80.6	
20-24	69.2	69.3	68.7	73.9	25.9	30.0	46.2	37.4	
25-29	36.0	36.2	37.5	38.8	11.6	15.8	24.9	21.2	
30-34	17.0	18.4	20.3	19.2	6.3	10.0	16.8	13.4	
35-39	9.3	11.4	13.6	11.7	3.8	7.3	13.3	9.5	
40-44	6.5	8.0	10.4	8.4	2.7	5.9	12.1	7.6	
45-49	4.8	6.5	6.8	6.7	2.4	4.7	9.6	6.4	
50-54	4.2	5.5	7.2	5.6	2.0	4.3	11.9	5.5	
55-59	3.5	4.8	6.9	4.7	1.9	4.2	13.5	5.1	
60 and above	3.1	4.3	6.5	3.5	2.4	5.2	15.0	4.1	

Table 2. 8: Percentage Distribution of Never Married Population Age 15 and Above byFive Years Age Group

Source: Tanzania, 1988 – 2022 PHCs

2.6 Net Nuptiality Life Tables

Nuptiality is a key demographic indicator used to study family formation, fertility patterns, and social structures. It is also analysed using nuptiality tables, which could track likelihood of marriage and how it changes across different ages, genders, and populations. Factors like culture, religion, socioeconomic conditions, and legal frameworks could influence nuptiality rates. There are mainly two types of nuptiality life tables- (1) the gross nuptiality table and (2) the net nuptiality life table. The gross nuptiality life table is based on the number of marriages that occur without considering the influence of mortality. It simply tracks how many people of a particular age group get married, assuming no one dies before reaching that age. This means the table focuses only on marriage transitions, ignoring mortality factors. The net nuptiality life table takes both marriage and mortality into account. It calculates the probability of getting married at each age, considering that some individuals might die before reaching the marriable age.

In the nuptiality life table, age 15 is considered as a minimum age for males as well as females keeping in view the distribution of population by marital status. In the same basis the maximum age for males and females is considered as 50 years and above. It must have viewed that estimates provided in the Net Nuptiality Life Tables are the result of two types of age specific attrition probabilities- the death probabilities and marriage probabilities (Mohammed and Naushin, 1974). Details of the computational procedures are provided in Appendix 4.

The net nuptiality life tables also highlight marriage probability for males and females respectively. It shows that for females, marriage probabilities are higher in younger ages

than corresponding probabilities for males, but in higher ages the male probabilities remain at a relatively higher level compared to that of females.

The last column of the net nuptiality life table provides years of single life remaining at start of age x, or the average expected years to marriage for those singles surviving up to a particular age ($^{\circ}e_{x}$). The complete Net Nuptiality Life Tables are presented in Appendix 3. The results presented in the summary table show that the average expected years to get married in Tanzania at age 15 are 10.6 for males and 8.2 for females (Table 2.8).

Similarly, for higher ages corresponding estimates are provided for average years and beyond the age of getting married. The average expected years of single life before marriage remained at 15 years of age is higher (11.4 years) to males in Tanzania Zanzibar compared to males of Tanzania and Mainland Tanzania (10.6 years). The average number of single life remained higher in females than that of males from 19 years of age and above, also observed that both males and females record the lowest expectancy of single life of 44 years of age onwards (Appendices 3.13 - 3.18).

	2012			2022
Place of Residence	Male	Female	Male	Female
Tanzania	10.5	8.9	10.6	8.2
Mainland Tanzania	10.4	8.9	10.6	8.1
Tanzania Zanzibar	11.0	9.3	11.4	8.0

 Table 2. 9:
 Summary of the Net Nuptiality Life Tables

Source: Appendices 3.13 to 3.18

Results further indicate that there has been an increase in the average expected years to get married for singles surviving up to a particular age ($^{\circ}e'_{x}$) for both male and female, between 2012 and 2022. The increase is more pronounced at age of 31 to 41 years for males than for females whose increase is more pronounced at age of 21 to 40 years (Figure 2.3).

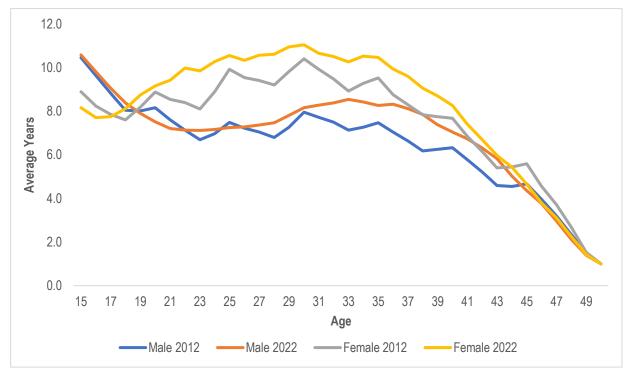


Figure 2.3: Expected Average Years to Marriage 2012 and 2022 PHCs

The future perspectives of nuptiality in Tanzania are shaped by evolving societal and economic dynamics, including the growing prevalence of single motherhood, cross-generational relationships, delayed marriages among men, and increasing rates of divorce and separation. As urbanization and education expand, traditional expectations surrounding marriage are shifting, with young men postponing marriage due to financial pressures and aspirations for stability. Simultaneously, cultural and economic factors contribute to cross-generational sexual relationships, often rooted in economic dependency. The rise in single motherhood reflects changing attitudes towards family structures, while divorce and separation are becoming more common as individuals prioritize personal freedom and equality in relationships. These trends indicate a gradual move away from traditional marital norms towards more diverse and unstable marriage institutions, necessitating legal and social frameworks to adapt and provide support for changing family dynamics.

Chapter Three

Fertility Patterns, Levels and Trends

Key Points

- The Age Specific Fertility Rates (ASFR) show "broad peak of fertility" in Tanzania.
- National Total Fertility Rate (TFR) declined from 6.9 children per woman in 1978 to 4.6 in 2022 whereas in Mainland Tanzania is TFR of 4.6 and Tanzania Zanzibar is 4.7.
- The TFR is lower in urban areas (3.8) compared with rural areas (5.8).
- The Net Reproductive Rate (NRR) for Tanzania is 2.1, which is above the replacement level of one daughter per woman.
- As it stands, Tanzania should therefore reconsider her policies on fertility since it is heading towards population replacement.

3.1 Introduction

Fertility is a key driver of population change, shaping both the demographic and economic landscape of a society. This analysis offers essential information that supports effective policy-making and targeted interventions. Fertility measures are intimately connected to a society's economic conditions, highlighting a broader link between population dynamics and socio-economic development. Examining fertility estimates in the context of socio-

economic factors is therefore vital for developing policies that promote balanced growth and sustainable development.

The fertility measures discussed in this chapter rely on two main data points: (1) reported live births within the past 12 months, categorised by the mother's age at the time of the census, and (2) the total number of children ever born, also categorised by the mother's age. These data provide insights into fertility across different age groups, which are essential for understanding age-specific fertility rates and lifetime fertility trends.

3.2 Crude Birth Rate

Tanzanian women are estimated to have given 1,467,325 births in the 12 months prior to the 2022 Census. Crude Birth Rate (CBR) is a general indicator showing changes in total population in respect of births that took place over a 12-month period prior to the census. The CBR in Tanzania and Mainland Tanzania was 24 births per 1,000 people, while in Tanzania Zanzibar was 29 births per 1,000 people in 2022. CBR is lower in urban areas (21) compared to rural areas (25) To compute an adjusted CBR, basic CBR is typically refined to reflect the population actually at risk of giving birth—mainly women of reproductive age (15–49 years). However, since the CBR itself cannot be "adjusted" in a strict formulaic sense without losing its nature as a crude rate, demographers usually shift to more refined fertility measures like the General Fertility Rate (GFR) or age-standardized rates instead (Table 3.1).

Table 3.1: Reported and Adjusted	Crude Birth Rates
----------------------------------	-------------------

Region	Crude Birth Rate					
Region	Reported	Adjusted				
Tanzania	24	35				
Rural	25	36				
Urban	21	34				
Mainland Tanzania	24	35				
Dodoma	24	33				
Arusha	23	37				
Kilimanjaro	21	27				
Tanga	26	34				
Morogoro	21	32				
Pwani	19	30				
Dar es Salaam	19	31				
Lindi	18	28				
Mtwara	21	32				
Ruvuma	21	35				
Iringa	20	32				
Mbeya	22	31				
Singida	26	36				
Tabora	24	39				
Rukwa	27	43				
Kigoma	24	36				
Shinyanga	23	38				
Kagera	27	39				
Mwanza	25	34				
Mara	28	37				
Manyara	25	40				
Njombe	18	32				
Katavi	26	39				
Simiyu	29	41				
Geita	28	37				
Songwe	26	42				
Tanzania Zanzibar	29	36				
Kaskazini Unguja	30	37				
Kusini Unguja	26	33				
Mjini Magharibi	27	36				
Kaskazini Pemba	33	40				
Kusini Pemba	31	39				

Source: Tanzania, 2022 PHC

3.3 General Fertility Rate

The General Fertility Rate (GFR) is a birth rate expresses the number of births per 1,000 women of a reproductive age group. The advantage of GFR over CBR is that it controls age and sex structure by relating the births to women at the risk of having them. However, the GFR represents an improvement over the CBR, which also has its limitation. The limitation arises from the fact that frequency of births varies within women in the range of reproductive ages. The GFR indicates, the extent to which age composition of population attributes the level of births in a country. General Fertility Rate for Tanzania and Mainland Tanzania is 144 births per 1,000 women and for Tanzania Zanzibar is 140 births per 1,000 women. The GFR is lower in urban areas (120 births per 1,000 women) than in rural area (162 births per 1,000 women). Across the regions, GFR ranges from 97 in Dar es Salaam to 191 births in Simiyu, per 1,000 women (Table 3.6).

3.4 Total Fertility Rate

3.4.1 Choice of the Method Used to Estimate TFR

The age-specific and total fertility rates from the 2012 and 2022 PHCs are either directly estimated from reported births in the 12 months preceding the census or indirectly estimated using each of the methods discussed. Some adjustment methods to estimate the TFR levels for 2022 were used as indicated to overcome this limitation and for 2012 PHC estimates the Arriaga method was used. Appendix 3 presents the whole procedure undertaken in the method used to estimate TFR. The Arriaga's Method was selected because of the following advantages: -

- Total Fertility Rate (TFR) calculation requires complete birth registration while Arriaga's Method relies on demographic snapshots from censuses. This flexibility is an advantage for Tanzania as vital registration system is not complete.
- Arriaga's Method is relatively straightforward, involving fewer calculations but still providing robust adjustments. It is particularly providing quick and reliable fertility estimates without extensive using computational resources.
- Given its design to function with limited, census-based data, Arriaga's Method is commonly applied as detailed demographic data is not always accessible. This focus makes it a standard choice in many global health and development studies.
- Less sensitive to age distribution distortions unlike the Children-Women Ratio, which may be skewed by an irregular age distribution of women in reproductive ages,

Arriaga's Method compensates for these variances by adjusting basic age-specific fertility rates.

3.4.2 Age Pattern of Fertility

Age-Specific Fertility Rates (ASFRs) was used to measure age pattern of fertility. ASFRs measure the fertility rate within specific age groups, usually in five-year intervals (e.g., 15-19, 20-24, 25-29, etc.). This method enables a detailed understanding of fertility behaviour across different age groups, indicates when fertility rates peak and identifies age-specific trends (Table 3.2).

ASFRs are usually calculated by dividing number of births to women in a specific age group by the number of women in that age group, often expressed per 1,000 women. These rates are crucial in examining age-related patterns and widely used in demographic studies and population planning. The trends in ASFR values across each age group are fundamental in demography and public health, as they help policymakers understand reproductive behaviour and allocate health resources accordingly (Table 3.2).

A	Age Specific F	ertility Rates (ASFR)
Age	Reported	Adjusted
15-19	0.045	0.077
20-24	0.137	0.206
25-29	0.143	0.209
30-34	0.134	0.192
35-39	0.108	0.150
40-44	0.052	0.070
45-49	0.02	0.022
Total Fertility Rate (TFR)	3.2	4.6

Table 3.2: Recorded and Adjusted Age Specific Rate

Source: Tanzania, 2022 PHC

The age-specific fertility rates (ASFR) for the three censuses show "early peak" fertility for the 2002 PHC, suggesting a significant portion of births occurred at young ages which has high impact on TFR. The ASFR in 2012 PHC show "late peak" fertility, a pattern where childbearing is more common among women aged 25-29 years in a population which has a low impact in TFR. The 2022 PHC ASFR show a "broad peak" fertility indicating that fertility rates relatively spread evenly across 20-29 years' age range, rather than being concentrated

in younger or older age groups. A broad ASFR peak reflecting a stable fertility pattern across a wide age range (20-29 years), often indicate flexibility in childbearing choices and support for families across different stages of life. This age pattern contributed to populations with stable socio-economic structures and supportive family policies (Figure 3.1).

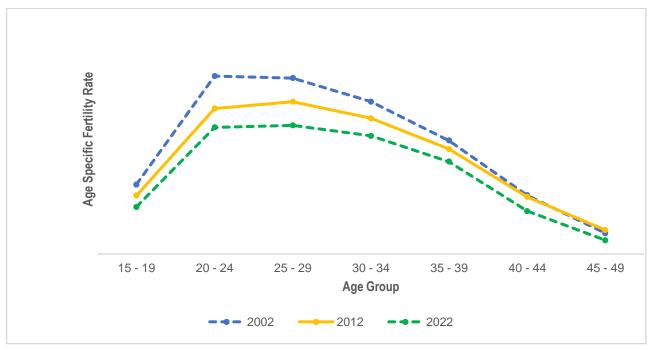
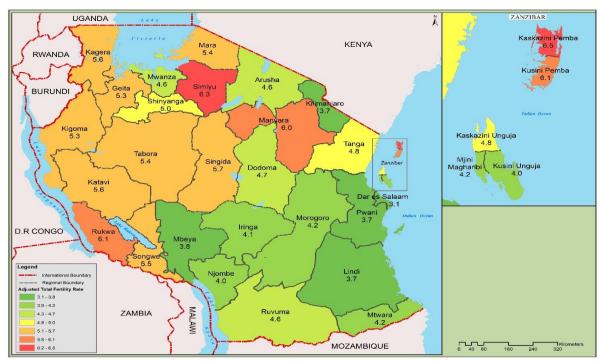


Figure 3.1: Age-Specific Fertility Rates; Tanzania, 2002-2022 PHCs

3.4.3 Total Fertility Rate

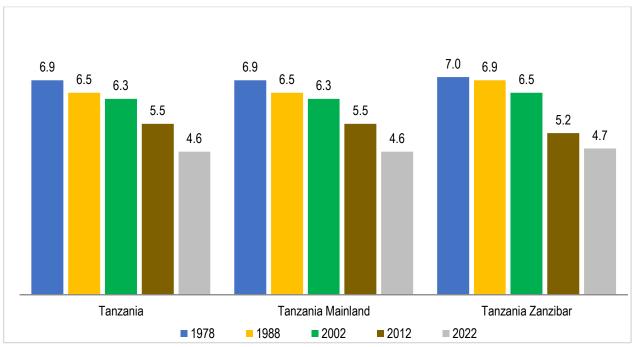

The results show that both Tanzania and Mainland Tanzania have TFR of 4.6 while Tanzania Zanzibar is 4.7. The TFR is lower in urban areas (3.8) compared with in rural areas (5.8), There is a wide variation of TFRs among regions, ranging from 3.1 for Dar es Salaam to 6.3 in Simiyu while in Tanzania Zanzibar ranges from 6.5 Kaskazini Pemba to 4.0 in Kusini Unguja (Table 3.3 and Map 3.1).

The Total Fertility Rate (TFR) is a critical demographic indicator that reflects the average number of children a woman is expected to have during her reproductive years (15–49). For Tanzania in 2022, two key sources provide TFR estimates: the 2022 Population and Housing Census (4.6) and the 2022 Tanzania Demographic and Health Survey (TDHS) (4.8). While both estimates are reliable and reflect declining fertility trends, it is recommended to use TFR from TDHS as the official rate.

Denier	Total Fertility Rate						
Region	Reported	Adjusted					
Tanzania	3.2	4.6					
Rural	3.8	5.3					
Urban	2.4	3.8					
Mainland Tanzania	3.2	4.6					
Dodoma	3.5	4.7					
Arusha	2.8	4.					
Kilimanjaro	2.9	3.1					
Tanga	3.8	4.					
Morogoro	2.4	4.:					
Pwani	2.4	3.					
Dar es Salaam	1.9	3.					
Lindi	2.4	3.					
Mtwara	2.7	4.:					
Ruvuma	2.8	4.					
Iringa	2.5	4.					
Mbeya	2.7	3.					
Singida	4.2	5.					
Tabora	3.5	5.					
Rukwa	4.0	6.					
Kigoma	3.7	5.					
Shinyanga	3.1	5.					
Kagera	3.9	5.					
Mwanza	3.4	4.					
Mara	4.1	5.					
Manyara	3.8	6.					
Njombe	2.3	4.					
Katavi	3.8	5.					
Simiyu	4.6	6.					
Geita	4.0	5.					
Songwe	3.4	5.					
Tanzania Zanzibar	3.8	4.					
Kaskazini Unguja	3.9	4.					
Kusini Unguja	3.3	4.					
Mjini Magharibi	3.2	4.					
Kaskazini Pemba	5.4	6.					
Kusini Pemba	4.9	6.					

Table 3.3: Reported and Adjusted Total Fertility Rates

Source: Tanzania, 2022 PHC


Tanzania TFR is significantly higher than that of Kenya (3.8 children per woman) and Rwanda (4.1 children per woman) but it is lower than that Mozambique (5.0 children per woman), reflecting disparities in reproductive health services, education, and socioeconomic development in the countries. Kenya and Rwanda demonstrated success in lowering TFR through enhanced access to contraception and education levels (Table 3.4).

Country	TFR (2022)	Source
Burundi	5.4	UNICEF Fertility Estimates 2022: UNICEF Data
Kenya	3.8	United Nations World Population Prospects (2022): UN Data
Malawi	4.4	World Population Review: Malawi TFR
Mozambique	5.0	World Bank: Fertility Rate Data.
Rwanda	4.1	UNFPA Rwanda Reports: UNFPA Rwanda.
Tanzania	4.6	2022 PHC
Uganda	5.0	DHS Uganda 2021-2022: DHS Data
Zambia	4.8	World Population Review: Zambia TFR.

Table 3.4: TFR for Tanzania Compared with Neighbouring	g Countries
--	-------------

3.4.5 Fertility Trends

The results from the past censuses indicate a downward trend of fertility in the country. The Total Fertility Rate (TFR) decline from 6.9 children per woman in 1978 to 4.6 in 2022 (Figure 3.2).

The TFR at regional level shows a consistent and substantial decline in 2022 Census TFR from 1978 Census. Regions in Mainland Tanzania with high reduction of TFR, between 1978 and 2022 are: Kilimanjaro from 7.6 to 3.7 (reduction of 3.9) and Mbeya from 7.4 to 3.6 (reduction of 3.6) while the region with lowest reduction are Tabora from 6.2 to 5.4 (reduction of 0.8) and Singida from 6.9 to 5.7 (reduction of 1.2) while in Tanzania Zanzibar there is only Kusini Unguja from 6.6 to 4.0 (reduction of 2.6) and lowest reduction is in Kaskazini Pemba from 7.8 to 6.5 (reduction of 1.3) (Table 3.5).

Table 3.5: Estimated Total Fertility Rates by Region; Tanzania

Region	1978	1988	2002	2012	2022
Tanzania	6.9	6.5	6.3	5.5	4.
Mainland Tanzania	6.9	6.5	6.3	5.5	4.
Dodoma	7.4	6.7	6.8	5.9	4.
Arusha	6.9	6.6	5.3	4.3	4.
Kilimanjaro	7.6	7.1	5.2	4.3	3.
Tanga	7.1	6.4	6.1	5.7	4.
Morogoro	6.3	6.3	5.7	4.9	4.
Pwani	5.3	5.0	5.5	4.7	3.
Dar es Salaam	5.7	4.6	4.3	3.6	3.
Lindi	5.9	5.7	5.3	4.6	3.
Mtwara	6.2	5.7	4.8	4.1	4.
Ruvuma	6.4	6.6	5.7	4.9	4.
Iringa	7.3	6.7	5.6	4.6	4.
Mbeya	7.4	6.5	5.7	5.1	3.
Singida	6.9	6.1	7.5	7.4	5.
Tabora	6.2	6.4	7.7	7.0	5.
Rukwa	8.7	7.5	7.7	7.3	6.
Kigoma	7.1	6.9	7.6	7.3	5.
Shinyanga	7.1	7.2	7.2	6.1	5.
Kagera	7.6	7.2	7.1	6.4	5.
Mwanza	7.4	7.0	7.2	6.7	4.
Mara	7.4	7.6	7.6	7.0	5.
Manyara	N/A	N/A	7.1	6.3	6.
Njombe	N/A	N/A	5.5	4.2	4.
Katavi	N/A	N/A	8.1	7.4	5.
Simiyu	N/A	N/A	8.1	7.9	6.
Geita	N/A	N/A	8.1	8.5	5.
Songwe	N/A	N/A	N/A	N/A	5.
Tanzania Zanzibar	7.0	6.9	6.5	5.2	4.
Kaskazini Unguja	7.0	6.8	6.8	5.5	4.
Kusini Unguja	6.6	6.9	6.4	4.8	4.
Mjini Magharibi	6.2	6.4	5.4	4.3	4.
Kaskazini Pemba	7.8	7.4	8.5	7.3	6.
Kusini Pemba	7.5	7.3	8.2	7.4	6.

Source: 1978-2012 PHCs

Note

i. N/A – Not Applicable

ii. Manyara, Njombe, Katavi, Simiyu, Geita, Songwe, Kaskazini Unguja, Kusini Unguja, Mjini Magharibi, Kaskazini Pemba and Kusini Pemba regions did not exist during the corresponding Censuses

3.5 Gross Reproduction Ratio

Three indicators (TFR, GRR and NRR) are used to predict levels at which population will be replaced. Population to be replaced, TFR should be greater or equal to 2.1 children per woman as well as Gross Reproduction Ration (GRR) and Net Reproduction Ratio (NRR) should be greater than or equal to one (1) to ensure that each female is replaced by a daughter for a population to be replaced. The GRR is a measurement like TFR, but it refers only to female births. The GRR is interpreted as the average number of daughters that would replace each woman in absence of female mortality from birth up to childbearing age, based on a set of age specific fertility rates. This index assumes that none of the girls die before reaching reproduction age.

Ensuring that fertility does not fall below replacement level (usually around 2.1 children per woman) is considered important for several social, economic, and demographic reasons. Maintaining fertility at or above replacement level is essential to ensure long-term population stability, economic sustainability, and a balanced age structure. When fertility rates fall below replacement, populations begin to shrink and age rapidly, leading to a declining workforce, increased pressure on healthcare and pension systems, and reduced economic growth. A smaller younger generation may struggle to support a growing elderly population, creating financial and social challenges. For these reasons, many governments view sustaining replacement-level fertility as critical to national planning and societal well-being.

Analysis of 2022 Census data indicate a GRR of 2.3 meaning that, each woman in the population is expected to have 2.3 daughters over her reproductive lifetime, on the average assuming current age-specific fertility rates and no female mortality. This measurement indicates a rate at which the female births population could replace itself through. GRR greater than 1.0 suggests potential population growth, while a GRR less than 1.0 indicates that the population might not fully replace itself in the future, holding constant other demographic factors. Furthermore, the GRR in urban is 1.9 lower than 2.6 in rural areas. However, at regional level the results revealed that GRR ranges from 1.4 in Dar es Salaam to 4.0 in Kaskazini Pemba (Table 3.6).

3.6 Net Reproduction Rate

The NRR is a demographic measure that indicates the average number of daughters a woman will have during her childbearing years, considering both fertility and mortality rates, considering female age specific fertility and mortality rates of a given period. This index assumes that some of the girls will die before completing childbearing years. TFR gives a

broad sense of fertility in a population, while NRR is more specifically tailored to generational replacement and sustainability of population size. Both measurements are crucial in demographic studies for assessing population dynamics and guiding policy on family planning and reproductive health.

Generally, a NRR of 1.0 implies that each generation of women is being replaced exactly by the next, resulting in a stable population if there is no immigration or emigration. The present findings showing NRR of 2.1 children per woman in Tanzania suggests that, on the average, each woman is giving birth to more than one daughter in her lifetime, accounting for the survival of daughters to reproductive age. Therefore, basing on the results on NRR in Tanzania, it indicates that the population is growing, since each generation is producing enough daughters to replace themselves and add additional members. The NRR for Tanzania regions ranges from 1.3 (Dar es Salaam) to 2.9 (Simiyu and Kaskazini Pemba) (Table 3.6).

Region	General Fertility Rate	Gross Reproduction Rate	Net Reproduction Rate
Tanzania	144.1	2.3	2.1
Rural	162	2.6	2.4
Urban	120	1.9	1.7
Mainland Tanzania	144	2.3	2.1
Dodoma	143	2.2	2.1
Arusha	143	2.2	2.1
Kilimanjaro	111	1.8	1.6
Tanga	145	2.4	2.1
Morogoro	131	2.0	1.8
Pwani	117	1.8	1.6
Dar es Salaam	98	1.5	1.3
Lindi	112	1.8	1.6
Mtwara	125	2.1	1.8
Ruvuma	141	2.3	2.1
Iringa	129	2.0	1.9
Mbeya	121	1.9	1.7
Singida	174	2.8	2.6
Tabora	175	2.6	2.4
Rukwa	189	3.0	2.7
Kigoma	159	2.6	2.4
Shinyanga	163	2.4	2.3
Kagera	172	2.8	2.5
Mwanza	142	2.2	2.0

 Table 3.6: Adjusted Crude Birth Rates, General Fertility Rates, Gross Reproduction

 Rates and Net Reproduction Rates

Mara	165	2.7	2.4
Manyara	182	2.9	2.8
Njombe	124	2.0	1.8
Katavi	178	2.7	2.6
Simiyu	191	3.1	2.9
Geita	168	2.6	2.4
Songwe	172	2.4	2.5
Tanzania Zanzibar	140	2.3	2.1
Kaskazini Unguja	147	2.8	2.1
Kusini Unguja	125	2.4	1.8
Mjini Magharibi	128	2.4	1.8
Kaskazini Pemba	179	4.0	2.9
Kusini Pemba	170	3.6	2.8

Source: Tanzania, 2022 PHC

Chapter Four Fertility Differentials

Key Points

- Fertility is higher (5.3 children per woman) in rural than in urban areas (3.8 children per woman).
- TFR is highest in Kaskazini Pemba (6.5 children per woman) and lowest in Dar es Salaam (3.1 children per woman).
- Regions around Lake Victoria and Western part of the country have higher fertility rates compared with other parts of the country.
- Fertility is negatively associated with education decreasing from 5.5 children per woman for women without education or those who attended pre-primary education to 2.3 children per woman for those with tertiary education.
- Women engaged in agricultural activities (farmers, livestock keepers and fisher men) have a relatively higher TFR (4.9 children per woman) compared with women engaged in other occupations or those not working.
- The observed fertility differentials are associated with cultural and existing socioeconomic status of women in respective areas.

4.1 Introduction

Fertility differentials in developing countries can be influenced by a variety of factors, including place of residence, education, age at first union, family planning, socioeconomic conditions and cultural practices. Other factors include child mortality, family size, polygamy and the practice of levirate marriage (Ezeh and Zulu, 2004). Fertility differentials discussed in this chapter are residence, marital status, education and occupation.

4.2 Fertility by Place of Residence and Region

The urban-rural differential in Total Fertility Rate (TFR) is a well-documented demographic pattern, with urban areas generally demonstrating lower fertility rates than rural areas. The

difference may be caused by various socio-economic, cultural, and healthcare access factors (United Nations, 2015 and Brockerhoff and Yang, 1994). Children in rural settings are often seen not only as a source of farming family labour but also as a form of old age social security. Urbanization may lead to changes in family dynamics, priorities, and access to resources, contributing to smaller family sizes (United Nations, 2019).

Generally, urban fertility rates especially in developing countries are lower than rural fertility rates. Studies show that on average urban fertility in sub-Saharan Africa is almost 30 percent lower than the rural fertility (Shapiro and Tambashe, 2000). Results from the 2022 Tanzania PHC show a similar pattern with the TFR of rural areas been higher (5.3 children per woman) compared with that of urban areas (3.8 children per woman), implying that, on average, women living in rural areas have about two children more than those living in urban areas.

Across all regions in Tanzania, the TFR is highest in Kaskazini Pemba (TFR of 6.5 children per woman) followed by Rukwa and Kusini Pemba (6.1 children per woman each) and Manyara (6.0 children per woman). Other regions with TFRs of 5 or more children per woman are Singida (5.7 children per woman), Kagera and Katavi (5.6 children per women each), Songwe (5.4 children per woman), Tabora and Mara (5.4 children per woman each). On the other hand, Dar es Salaam Region has the lowest TFR of 3.1 children per woman (Table 4.1).

The 2022 PHC results further reveal that regions around Lake Victoria, Western part of the country, Southern Highlands and Pemba have high fertility rates compared with other parts of the country. The high level of fertility in these regions is consistent with low the mean age at first marriage. The average mean age at first marriage in most of these regions is below the national average of 22 years (See Chapter 2 of this Volume).

TFRs for rural areas are relatively higher than those of urban areas across all regions in Tanzania. Regions with relatively large TFR differences between rural and urban areas are Dodoma, Arusha and Rukwa (difference of 1.9 children each) and Singida and Manyara (1.8 children each). Regions with TFR differences of less than one are Mtwara and Iringa (0.8 children), Mbeya (0.6 children), Kilimanjaro (0.4 children) and Lindi and Mjini Magharibi (difference of 0.2 children each). Variations observed in most regions in fertility rates between rural and urban areas are probably due to, among other factors, differences in socio-economic development between rural and urban areas.

Table 4.1: Estimated Total Fertility Rates by Region

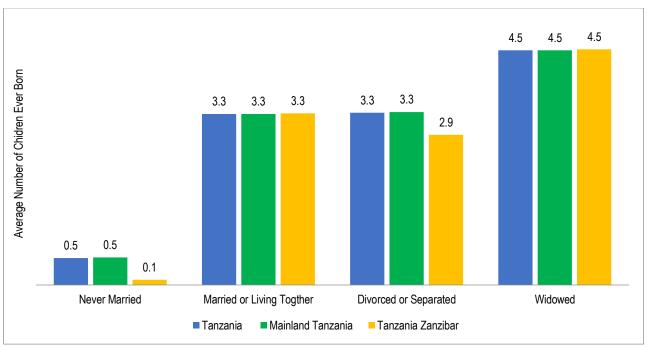
Deview		TFR 2022			
Region	Total	Rural	Urban	Difference (Rural-Urban	
Tanzania	4.6	5.3	3.8	1.5	
Mainland Tanzania	4.6	5.3	3.8	1.5	
Dodoma	4.7	5.7	3.8	1.9	
Arusha	4.6	5.5	3.6	1.9	
Kilimanjaro	3.7	3.7	3.3	0.4	
Tanga	4.8	5.1	3.8	1.4	
Morogoro	4.2	4.9	3.7	1.2	
Pwani	3.7	3.9	3.6	0.3	
Dar es Salaam	3.1	N/A	3.1	N/A	
Lindi	3.7	3.6	3.5	0.2	
Mtwara	4.2	4.3	3.5	0.8	
Ruvuma	4.6	4.5	4.3	0.3	
Iringa	4.1	4.4	3.5	0.8	
Mbeya	3.8	4.1	3.5	0.6	
Singida	5.7	6.1	4.2	1.8	
Tabora	5.4	5.6	4.2	1.4	
Rukwa	6.1	6.5	4.6	1.9	
Kigoma	5.3	5.7	4.5	1.2	
Shinyanga	5.0	5.7	4.4	1.3	
Kagera	5.6	5.6	4.2	1.4	
Mwanza	4.6	5.3	3.9	1.4	
Mara	5.4	5.7	4.9	0.8	
Manyara	6.0	6.2	4.4	1.8	
Njombe	4.0	4.1	3.6	0.5	
Katavi	5.6	5.9	5.2	0.6	
Simiyu	6.3	6.7	5.1	1.6	
Geita	5.3	5.8	5.0	0.9	
Songwe	5.5	6.1	4.6	1.4	
Tanzania Zanzibar	4.7	5.2	4.3	0.9	
Kaskazini Unguja	4.8	5.0	4.0	1.0	
Kusini Unguja	4.0	4.1	3.6	0.5	
Mjini Magharibi	4.2	4.4	4.2	0.2	
Kaskazini Pemba	6.5	6.6	5.6	1.0	
Kusini Pemba	6.1	6.3	5.3	1.0	

Source: Tanzania, 2012 and 2022 PHCs

Note: *Songwe regional TFR was calculated using the Mbeya regional data.

N/A- Not Applicable

Dar es Salaam region is completely urban and therefore a difference of TFR between rural and urban area cannot be calculated.


4.3 Fertility by Marital Status

The relationship between marital status and fertility is a key area in demographic studies, since marital status significantly impacts fertility patterns. Married women generally have higher fertility rates than unmarried women (single, separated, divorced, or widowed). This is because marriage typically provides a stable social and economic environment conducive to childbearing (Bongaarts and Potter, 1983).

Unmarried women, particularly in societies where marriage is closely tied to childbearing, often have lower fertility. Divorced and widowed women tend to have lower fertility rates due to a lesser exposure to childbearing within a stable partnership. However, re-marriage can influence fertility since women who re-marry may have additional children, though the extent depends on age, cultural norms, and socioeconomic factors.

Furthermore, cohabitation in many regions is becoming more common and is increasingly associated with fertility like marriage, especially in contexts where cohabiting relationships are socially accepted and legally recognized. Cohabitating women may exhibit fertility rates closer to those of married women, though this can vary by region and cultural context (Lesthaeghe, 2010). Tanzania, unlike many other countries in sub–Saharan Africa, marriage is a strong determinant of fertility, because women are expected to bear children once married. Analysis in this section is using the average mean number of children ever born by marital status. TFR is age selective hence the categories of marital status show awkward TFRs because marital status is also age selective.

The relatively higher fertility among the divorced and separated women in Tanzania (Figure 4.1) does not conform to the situation in most countries and this may probably be a result of most of women been divorced after completing lifetime fertility. This may also be the case for the relatively higher average number of children ever born to widowed women. A relatively low average number of children ever born to unmarried women in Tanzania Zanzibar may be explained by the culture which prohibiting women having children before marriage (Figure 4.1).

Figure 4.1: Average Number of Children Ever Born by Marital Status; Tanzania, 2022 PHC

4.4 Fertility by Education Level

Education level is one of the important factors that affecting fertility levels in a society. Effects of education on fertility can be divided into three parts associated with: demand for children; supply of children; and costs of fertility regulation (World Bank, 2018). Education facilitates acquisition of information on family planning and is associated with the use of more effective contraceptive methods. Education increases husband-wife communication and imparts a sense of control over one's destiny, which may encourage attempts to control childbearing. Furthermore, education increases couple's income potential, making a wide range of contraceptive methods affordable and delays entry into marital unions (Kpedkepo, 1982) and in so doing reduces fertility. Regions with lower educational attainment tend to have higher TFRs, because limitation in education can lead to early marriages and less use of family planning (Bongaarts, 2003).

The Age-Specific Fertility Rates (ASFR) by education level, emphasizing the strong influence of educational attainment on fertility patterns and timing of childbearing. The graph illustrates Age-Specific Fertility Rates (ASFR) by education level, showing that fertility peaks in the 20–29 age range across all groups but varies considerably by education level. Women with no education have the highest fertility rates, starting childbearing earlier and maintaining higher rates across all ages, while those with primary education follow a similar but slightly lower trend. Fertility declines further for women with secondary education, and university-

educated women exhibit the lowest fertility rates, with a delayed peak in the 30–34 age group. Overall, higher education is associated with lower fertility and delayed childbearing, reflecting the influence of education on reproductive behaviour (Figure 4.2)

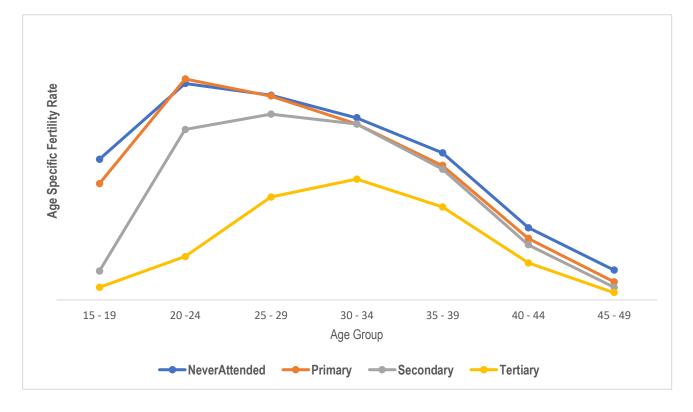


Figure 4.2: Age-Specific Fertility Rates by Education Level; Tanzania, 2022 PHC

Findings from the 2022 PHC show that fertility is negatively associated with the educational attainment of the mother. Figure 4.2 shows that the TFR decreases as the education level of the mother increases; decreasing from 5.5 children per woman for women without education or attended pre-primary education only to 2.3 children per woman for women with tertiary education or above (university or related in Mainland Tanzania). Results show a decrease in TFR in Tanzania Zanzibar from 5.3 children per woman for women without education or attended pre-primary education to only 3.3 children per woman for women with tertiary education (university or related in Tanzania Zanzibar) (Figure 4.3). Findings show educated women in Zanzibar have a higher TFR compared to those in Mainland Tanzania. With exception of the TFR of women who never attended school and those with pre-primary education, TFRs are higher for women residing in Zanzibar than for those residing in Mainland Tanzania.

This suggests that the national TFR of 4.6 children per woman is mainly influenced by fertility of women who never attended school or with pre-primary education. These findings are in

line with those of other countries whereby educated women have fewer children compared with women without formal education.

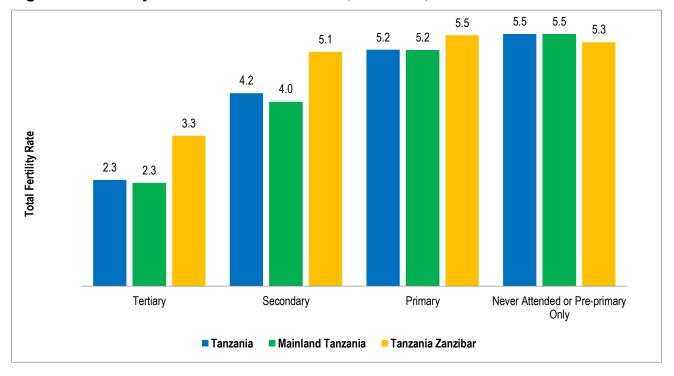


Figure 4.3: TFR by Education Level Attained; Tanzania, 2022 PHC

The Total Fertility Rate (TFR) trends by education level in Tanzania for 2012 and 2022, categorized into Tanzania overall, Mainland Tanzania, and Tanzania Zanzibar. Across all regions, the TFR decreases with higher levels of education. Those with "Never Attended or Pre-primary Only" consistently show the highest TFR, while individuals with tertiary education have the lowest. Between 2012 and 2022, there is a general decline in fertility rates across most education levels, with the most significant reductions observed in the lower education categories.

In Mainland Tanzania, the TFR for individuals with no or limited education dropped significantly, from 7.6 in 2012 to 5.5 in 2022, while tertiary-educated individuals experienced a slight decrease from 3.3 in 2012 to 2.3 in 2022. Similar trends are observed in Zanzibar, though TFR levels are generally lower than in Mainland Tanzania. For example, Zanzibar's TFR for "Never Attended or Pre-primary Only" declined from 7.5 in 2012 to 5.3 in 2022, and TFR for tertiary education declined from 4.0 in 2012 to 3.3 in 2022.

Overall, the data highlights the strong correlation between higher education levels and reduced fertility rates, reflecting the impact of education on family planning and reproductive behaviour. The declining TFR in lower education categories suggests progress in access to education and awareness of family planning, while the relatively low TFR in Tanzania

Zanzibar compared to the Mainland Tanzania may indicate differing socioeconomic or cultural factors.

Total Fertility Rate (TFR) by education level in Tanzania, divided into three categories: Tanzania (overall), Mainland Tanzania, and Tanzania Zanzibar, for the years 2012 and 2022. Each education category—Tertiary, Secondary, Primary, and "Never Attended or Preprimary Only"—is displayed with corresponding fertility rates (Figure 4.4).

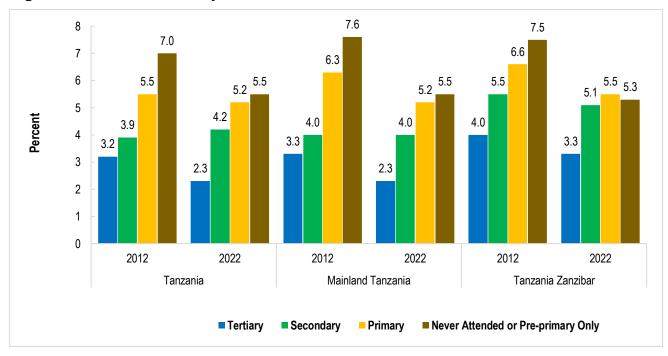


Figure 4.4: Trend of TFR by Education Level Attained; Tanzania, 2012 and 2022 PHCs

4.5 Fertility by Occupation

4.5.1 Age-Specific Fertility Rates by Occupation of Women

Age-Specific Fertility Rates (ASFR) by occupational categories reveal how fertility patterns vary among women aged 15–49 based on employment types. This measure highlights the relationship between work engagement and reproductive behaviour, reflecting the impact of socio-economic factors, work environments, and lifestyles on childbearing. Analysing these patterns helps inform targeted policies addressing fertility and labour-related challenges.

Figure 4.5 displays Age-Specific Fertility Rates (ASFR) by occupational categories, showing different fertility patterns across age groups (15–49 years) for various employment types. Fertility peaks across most occupations in the 25–29 age group, with "Agriculture", " Street Vendors " and "Not Working" showing the highest ASFR values. "Technicians" and "Small Business" categories follow a similar path but at lower rates, while "Clerks" and "Professional" maintain consistently lower fertility across all age groups. The steep decline in fertility rates after 35–39 years is evident across all occupations. This suggests that

women in agriculture and street vendors roles experience higher fertility compared to those in professional or clerk categories, possibly due to socio-economic and lifestyle differences.

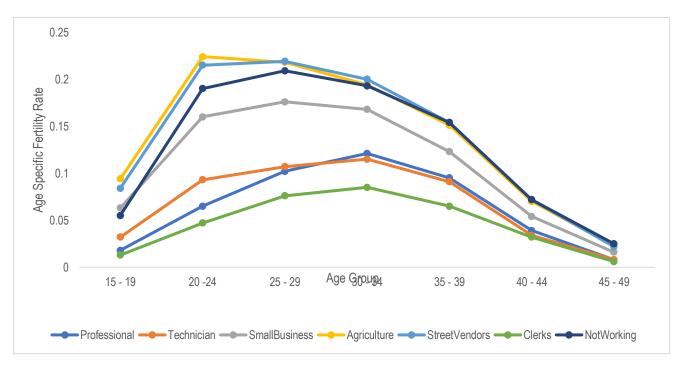
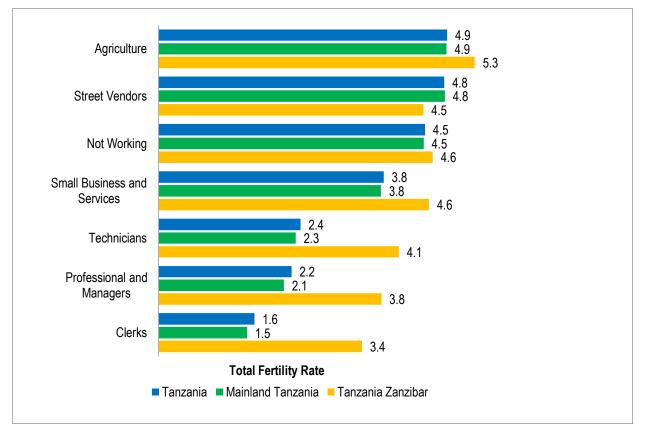


Figure 4.5: Age-Specific Fertility Rates by Occupation Categories; Tanzania, 2022 PHC

4.5.2 Total Fertility Rate by Occupation of Women

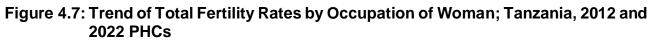
Total Fertility Rate (TFR) often varies by occupation, as different types of work are associated with varying socio-economic conditions, time demands, cultural norms and job security level. Occupations requiring higher education or extensive time commitments, such as professional and managerial roles, tend to be associated with lower TFRs. Women in these occupations often have fewer children due to career priorities.

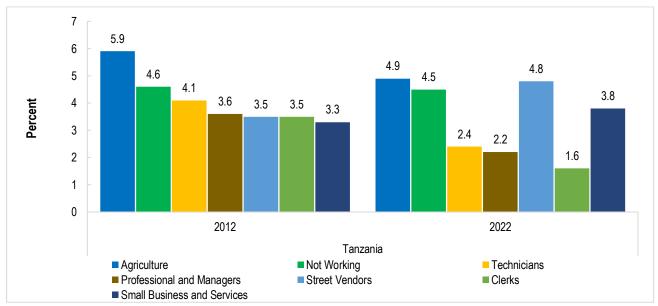

According to Frejka and Calot (2001), occupations with better job security, maternity benefits and flexible work options can influence TFR positively by reducing the opportunity cost of childbearing. On the other hand, women in informal or low-income occupations may have higher fertility rates than those in formal, stable employment due to socio-economic constraints and limited access to family planning resources.

Results from the 2022 PHC show that, women in Tanzania engaged in agricultural activities (farmers, livestock keepers and fishers) have a relatively higher TFR (4.9 children per woman) compared with women engaged in other occupations or not working (Figure 4.6). On the other hand, women engaged in clerical work recorded the lowest TFR of 1.6 births per woman while professionals, technicians and those engaged in small businesses or

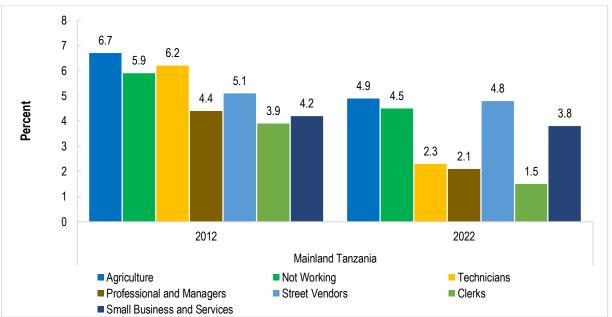
services estimated TFRs of 2.2 to 3.8 children per woman. A similar pattern is observed in Mainland Tanzania.

Women in Tanzania Zanzibar engaged in agricultural activities (farmers, livestock keepers and fisher men) have the highest TFR (5.3 children per woman) while clerks have the lowest TFR (3.4 children per woman). In general, with except of the street vendors, TFRs for all occupation categories in Tanzania Zanzibar are higher than those of Mainland Tanzania (Figure 4.6).


These findings are in line with those of other countries whereby working women have fewer children as they are more educated and therefore well informed on advantages of having a small family. Work commitment and career advancement also limit employed and professional women from having many children. On the other hand, most of the unemployed women are less educated and reside in rural areas where accessibility to family planning services is limited.



4.5.3 Trends in Total Fertility Rates by Occupation of Women: 2012-2022 PHC


Fertility levels are closely related with profession of a woman. Women who are employed or working have lower fertility than those who are not working. Results from the 2012 PHC show that generally, in Tanzania, women who are engaged in agricultural activities (farmers, livestock keepers and fishers) have the highest TFR (5.9 children per woman) compared to those engaged in the small business and service (3.3 children per woman). The same trend has been observed in the 2022 PHC where majority of women engaged in agricultural activities has highest TFR (4.9 children per women) followed by those employed as a street vendor (4.8 children per woman). On the other hand, there is a significant change of TFR for women employed as clerks, where the TFR has declined from 3.5 children per women in 2012 to 1.6 children per women in 2022 PHC (Figure 4.7).

In Mainland Tanzania results from the 2012 PHC show fertility was highest for those women engaged in agricultural activities (farmers, livestock keepers and fishers) with a TFR of 6.7 children per women while in 2022 PHC the TFR for women engaged in the same occupation declined to 4.9 children per women. In addition, results indicate that those women employed as professionals and managers had a TFR of 4.4 children per women in 2012 while in 2022 the number of children per women employed in the same occupation declined to 2.1 children per women (Figure 4.8).

In Tanzania Zanzibar results from the 2012 PHC show TFR was highest (6.6 children per woman), for women who were not working. In 2022 PHC the highest TFR was recorded for those women employed as street vendors (5.3 children per woman) followed by those engaged in small business and those not working recorded a fertility level of around 4.6 respectively. Women employed as clerks recorded the lowest TFR of 4.1 births per woman in 2012 while in 2022 they also recoded the lowest birth of 3.4 births per women (Figure 4.9).

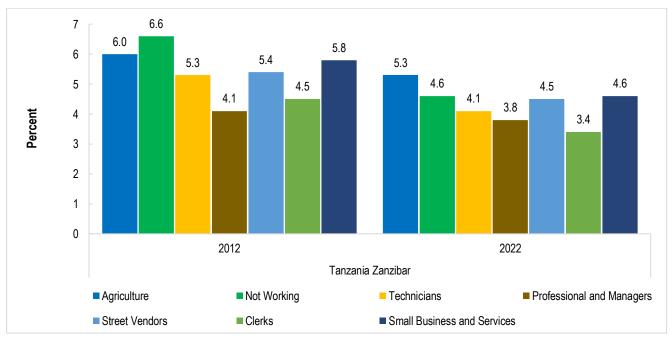


Figure 4.9: Trend of Total Fertility Rates by Occupation of Woman; Tanzania Zanzibar, 2012 and 2022 PHCs

Chapter Five Adolescent Fertility

Key Points

- Adolescent Fertility Rate (AFR) for Tanzania is about 77 children per 1,000 women aged 15–19 years.
- The AFR is significantly higher in rural areas (about 95 children per 1,000 women) than in urban areas (about 45 children per 1,000 women).
- Adolescent fertility contributes 1.7 percent to the Total Fertility Rate (TFR) at the national level, much higher contribution observed in Mainland Tanzania (1.7%) compared with Tanzania Zanzibar (0.5%)
- Policy options to reduce adolescent fertility could include Implementing programmes that keep girls in school longer including a "back to school" policy for girls who become pregnant and provide scholarships or vocational training to empower them economically.

5.1 Introduction

The concept of adolescent fertility is important for health, social and economic reasons. Children born to adolescent women (mothers aged 15 – 19 years) face an increased risk of illness and death. Adolescent mothers are more likely to experience difficult pregnancy outcomes and maternity-related mortality than older

women and they are more constrained in their ability to pursue educational opportunities than their counterparts who delay childbearing. As of 2019, adolescents in developing countries aged 15–19 years experienced approximately 21 million pregnancies annually, with about half of being unintended. These unintended pregnancies resulted in an estimated 12 million births. Furthermore, 55 percent of unintended pregnancies ended in abortion, many of which were unsafe due to limited access to proper reproductive health services (WHO 2024; Sully *et al.*, 2020).

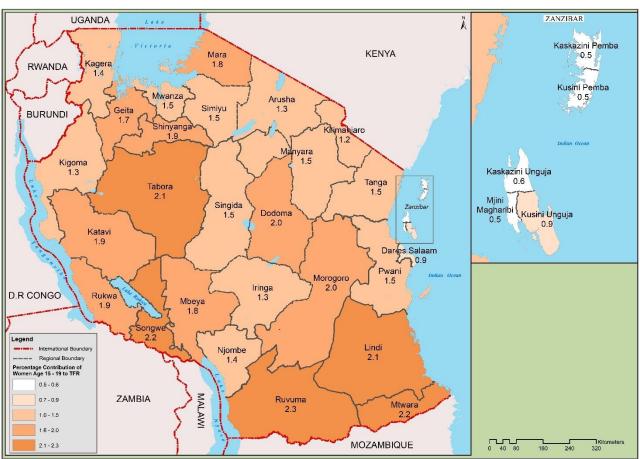
Early childbearing is associated with lower educational attainment and persistent poverty among those becoming mothers at adolescent ages. The 2022 Tanzania Demographic and Health Survey, reports that teenagers' pregnancies decrease with increasing education. For instance, 53 percent of women aged 15-19 years without education ever had a live birth, as compared with 9 percent of women aged 15-19 years with secondary education or higher. Teenage pregnancy also decreases with increasing wealth, from 35 percent in the lowest wealth quintile to 12 percent in the highest quintile (MoHCDGEC and MoH, 2022). UNFPA and global stakeholders continue to prioritize reducing adolescent pregnancy, engaging youth in policy decisions and enhancing access to reproductive services, aligning with the 1994 International Conference on Population and Development (ICPD) goals.

5.2 Levels of Adolescent Fertility

The PHC 2022 results indicate that the Adolescent Fertility Rate (AFR) for Tanzania is about 77 children per 1,000 women aged 15–19 years, with a higher rate in Mainland Tanzania (about 79 children per 1,000 women) compared to Tanzania Zanzibar (about 25 children per 1,000 women) (Table 5.1). The AFR is also significantly higher in rural areas (about 95 children per 1,000 women) than in urban areas (about 45 children per 1,000 women).

Adolescent Fertility Rates (AFRs) of regions in Mainland Tanzania is generally higher compared with those in Tanzania Zanzibar, except for Dar es Salaam region. This disparity may be explained by differences in the education systems between Mainland Tanzania and Tanzania Zanzibar; the education system in Tanzania Zanzibar allows young girls to stay in school longer than mainland, thereby delaying marriage and childbearing. AFRs varies significantly across regions, ranging from 19.3 in Mjini Magharibi to 120.6 in Songwe. Ruvuma, Tabora, Rukwa Katavi and Songwe regions report AFRs exceeding 100.

Table 5.1: Adolescent Fertility Rate by Region and Place of Residence


Region	То	tal	Rural		Urban	
	Adolescent Fertility (Births per 1,000 Women)	Percentage Contribution of Women Age 15-19 to TFR	Adolescent Fertility (Births per 1,000 Women)	Percentage Contribution of Women Age 15-19 to TFR	Adolescent Fertility (Births per 1,000 Women)	Percentage Contribution of Women Age 15-19 to TFR
Tanzania	76.5	1.7	95.3	1.8	45.4	1.2
Mainland Tanzania	70 E	1.7	07.0	4.0	40.0	1.2
	78.5		97.2	1.8	46.8	
Dodoma	95.2	2.0	127.7	2.2	59.2	1.5
Arusha	59.9	1.3	84.1	1.5	28.4	0.0
Kilimanjaro	44.0	1.2	46.7	1.2	30.9	0.9
Tanga	72.3	1.5	83.9	1.6	39.3	1.(
Morogoro	85.3	2.0	113.5	2.3	54.0	1.5
Pwani	54.4	1.5	64.4	1.6	42.5	1.2
Dar es Salaam	26.0	0.9	NA	NA	26.0	0.9
Lindi	79.2	2.1	82.1	2.3	54.8	1.6
Mtwara	90.0	2.2	100.9	2.4	52.5	1.5
Ruvuma	103.9	2.3	111.7	2.5	68.7	1.6
Iringa	53.7	1.3	62.1	1.4	34.8	1.0
Mbeya	69.3	1.8	87.3	2.1	43.7	1.2
Singida	87.5	1.5	95.5	1.6	48.0	1.1
Tabora	115.8	2.1	124.3	2.2	63.4	1.5
Rukwa	117.0	1.9	131.1	2.0	67.7	1.5
Kigoma	69.4	1.3	77.7	1.4	49.3	1.1
Shinyanga	97.5	1.9	113.5	2.0	72.1	1.6
Kagera	77.5	1.4	79.8	1.4	41.3	1.0
Mwanza	69.2	1.5	90.6	1.7	42.5	1.1
Mara	95.3	1.8	106.6	1.9	76.4	1.6
Manyara	90.1	1.5	94.3	1.5	56.8	1.3
Njombe	55.6	1.3	63.1	1.5	37.6	1.0
Katavi	105.8	1.4	116.8	2.0	76.0	1.5
Simiyu	96.5	1.5	103.1	1.5	70.0	1.4
· ·						
Geita	91.3	1.7	105.3	1.8	75.1	1.5
Songwe	120.6	2.2	146.6	2.4	70.3	1.5
Tanzania Zanzibar	25.4	0.5	30.9	0.6	20.1	0.5
Kaskazini Unguja	26.9	0.6	27.7	0.6	23.1	0.6
Kusini Unguja	36.4	0.9	36.3	0.9	37.2	1.(
Mjini Magharibi	19.3	0.5	24.1	0.5	18.4	0.4
Kaskazini Pemba	33.9	0.5	35.3	0.5	25.8	0.5
Kusini Pemba	31.4	0.5	33.2	0.5	23.9	0.5

Source: Tanzania 2022 PHC

5.3 Contribution of Adolescent Fertility to Total Fertility Rate

Adolescent fertility overall contributes 1.7 percent to the Total Fertility Rate (TFR) at national level, with a higher contribution in Mainland Tanzania (1.7%) compared with Tanzania Zanzibar (0.5%) (Table 5.1). The regions which contribute mostly to adolescent fertility are Ruvuma (2.3%), Mtwara and Songwe (2.2% each), Lindi and Tabora (2.1% each) and Dodoma and Morogoro (2.0%) respectively. These regions are characterized by a relatively

higher prevalence of early marriages than others. On the other hand, the AFR's contribution to TFR remains below 1 percent in all regions in Tanzania Zanzibar (Map 5.1).

Map 5.1: Percentage Contribution of Adolescent Fertility to TFR by Region; Tanzania, 2022 PHC

5.4 Adolescent Fertility Differentials

5.4.1 Adolescent Fertility by Education Status

Findings from table 5.2 show percentage of girls who had at least one birth at the time of Census and education attainment. Results confirm that early childhood fertility is negatively related to girls' education status. Teenagers without education are more likely to start childbearing than the more educated. Results show that 38.7 percent of girls without education started childbearing compared to 7.0 percent with secondary or higher education.

Education Attainment		Number of Females							Percentage					
	Total	15	16	17	18	19	Total	15	16	17	18	19		
Total	3,042,091	602,288	620,094	613,370	652,363	553,976	16.9	4.3	6.5	12.3	25.1	37.5		
Never Attended	295,514	45,795	49,883	53,970	81,687	64,179	38.7	9.8	18.6	33.2	49.8	65.2		
Primary	1,050,135	247,908	151,219	183,774	242,628	224,606	26.6	4.3	11.2	21.0	37.7	54.1		
Secondary and above	1,696,442	308,585	418,992	375,626	328,048	265,191	7.0	3.4	3.4	5.0	9.5	16.8		

Table 5.2: Adolescents with at Least One Birth by their Education Attainment

Source: Tanzania, 2022 PHC

Findings showed adolescent fertility is strongly associated with education of the head of the household. It was revealed that adolescents living in households headed by least educated heads were most likely to have started childbearing as compared to those headed by better educated heads. For instance, 20.8 percentage of adolescents living in households headed by heads who never attended school had already started childbearing at the time of the Census against 7.3 percent of those living in households headed by heads with secondary or higher education (See Table 5.3). Generally, education of the head of the households is related with general welfare of the household. Households headed by less educated heads are more likely to experience poverty, suggesting a positive association between adolescent fertility and household poverty status.

 Table 5.3: Percentage of Adolescents with at Least One Birth by Education Attainment

 of the Household Head

Education Attainment		Number of Females							Perc	entage						
	Total	15	16	17	18	19	Total	15	16	17	18	19				
Total	3,082,308	612,545	629,304	621,503	660,262	558,694	14.4	1.5	3.9	9.7	22.7	35.6				
Never Attended	606,820	128,695	125,674	118,525	133,281	100,645	20.8	2.8	7.2	16.6	33.5	49.3				
Primary	1,825,655	375,861	380,294	368,717	381,320	319,463	14.7	1.3	3.6	9.8	23.7	38.5				
Secondary and above	649,833	107,989	123,336	134,261	145,661	138,586	7.3	0.6	1.4	3.5	10.0	18.7				

Source: Tanzania, 2022 PHC

5.4.2 Adolescent Fertility by Place of Residence

Table 5.4 gives proportion of adolescent girls with at least one birth by rural-urban residence. Results show that 14.0 percent of all adolescents had given at least one birth. Fertility among adolescents is very low at age 15 years and 16 years but becomes substantial at ages 17 years to 19 years. The percentage of adolescents who have started childbearing was higher in rural (17.7%) than in urban areas (8.1%) and higher in Mainland Tanzania (14.3%) than Tanzania Zanzibar (4.0%).

United Republic of Tanzania **Mainland Tanzania** Tanzania Zanzibar Age Total Rural Urban Total Rural Urban Total Rural Urban 14.0 17.7 8.1 14.3 18.0 8.3 4.0 4.9 3.1 Total 1.5 1.8 0.9 1.5 1.8 0.9 0.4 0.4 0.3 15 4.9 3.8 2.0 3.9 5.0 2.0 0.6 0.8 0.5 16 9.5 4.7 9.8 12.9 4.9 2.4 1.4 12.6 1.9 17 22.1 28.5 11.8 22.6 29.1 12.2 5.6 7.1 4.2 18 34.4 44.0 20.5 35.2 44.7 21.1 12.0 15.6 8.9 19

Table 5.4: Percentage Distribution of Adolescents with at Least One Birth by Place of Residence; Tanzania, 2022 PHC

5.4.3 Adolescent Fertility Rate by Marital Status

Marital status is a strong predictor of fertility, in accordance with social expectations and norms around childbearing. Table 5.5 shows that the Adolescent Fertility Rates (AFR) for ever-married adolescent females in Tanzania is significantly higher (195 children per 1,000 women aged 15–19 years) compared with never-married adolescents (16 children per 1,000 women). Ever-married adolescents face stronger expectations for childbearing with greater opportunity for pregnancy, thus contributing to higher AFR. In the contrast, never-married adolescents may encounter social, cultural, or religious restrictions against childbearing, resulting in a lower AFR.

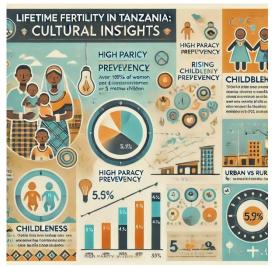
The AFR for ever-married adolescents is higher in rural areas (202 children per 1,000 women) compared with urban areas (170 children per 1,000 women), while the AFRs remain similar in rural and urban areas for never-married adolescents (18 children per 1,000 women). This higher AFR among ever-married adolescents in rural areas may create differences in socio-economic development, educational opportunities and access to reproductive health services. Limited access to family planning and healthcare services in rural areas may contribute to higher birth rates among married adolescents.

Furthermore, the AFRs are higher in Mainland Tanzania for both ever-married (197 children per 1,000 women) and never-married adolescents (17 children per 1,000 women) while compared with Tanzania Zanzibar (150 and 11 children per 1,000 women for never-married).

Table 5.5: Adolescent Fertility Rate by Marital Status and Place of Residence

Place of Residence	Ever Married	Never Married
Tanzania	195.2	16.0
Rural	201.5	18.0
Urban	170.4	18.0
Mainland Tanzania	196.9	17.0
Rural	202.9	20.0
Urban	175.9	18.0
Tanzania Zanzibar	150.0	11.0
Rural	155.8	11.0
Urban	143.6	10.0

Source: Tanzania 2022 PHC


Chapter Six Lifetime Fertility

Key Points

- Lifetime fertility shows that childbearing is still embedded in Tanzania culture.
- The phenomenon of having high parities is still acceptable; over 10% of women have parity 5 or above.
- The percentage of women aged 45 49 years who were childless increased from 4.4 percent in 2012 to 5.2 percent in 2022.
- The percentage of childless women is relatively higher among urban women (6.2 percent) compared with rural women (4.6 percent).

6.1 Introduction

Lifetime fertility refers to total number of children a woman has in her lifetime. It reflects a woman's reproductive behaviour. showing the total childbearing outcomes by the end of her reproductive years. This is often measured by looking at a woman's completed fertility (i.e., how many children she has had by the time she reaches the end of her childbearing years) and examining different patterns in populations over time (Bongaarts and Casterline 2013). The analysis of

lifetime fertility is a vital tool for understanding and responding to demographic trends. It informs policymakers, health experts and economists on the likely trajectory of population growth and needs of future generations as well as enabling the development of strategies of balancing economic, social, and environmental factors.

This chapter analyses lifetime fertility for women aged 15-49 years using parity distribution and progressive ratios. The expected pattern is that the number of children would increase with the age of the mother. The number of children ever born alive is used to capture lifetime fertility of a woman. Lifetime fertility is therefore the number of children born alive during the entire reproductive period of a woman.

6.2 Measurement of Lifetime Fertility

There are several key measurements used to assess and analyse lifetime fertility, such measurements are Total Fertility Rate (TFR), Completed Fertility Rate (CFR), Children Ever Born (CEB), Age Specific Fertility Rate (ASFR), Parity Distribution, Parity Progression Ratios (PPR) and Reproductive Life Span (RLS). Measurements such as the TFR, CFR, and ASFR are more appropriate for better understanding of fertility behaviour, predict future trends, and inform policy, because they provide a more detailed and nuanced understanding of fertility patterns. While CEB is useful for understanding past fertility outcomes, it lacks the temporal, dynamic, and cohort-specific information needed for a comprehensive analysis of lifetime fertility (United Nations. 2003). On the other hand, parity distribution helps in identifying trends in family size, fertility control and reproductive behaviour and shows fertility patterns such as whether women are more likely to have larger families or smaller ones as fertility norms evolve. Likewise, PPR is a useful measurement for assessing lifetime fertility as it provides insight into to the distribution of births across different parties in a population.

6.3 Parity Distribution

Parity distribution refers to statistical representation of the number of children born by women in a population. It is crucial in assessing fertility patterns and reproductive behaviours within different demographic groups, as it helps to reveal insights into family size preferences, birth rates, and potential implications for population growth.

The changes in fertility by age may be explained by examining the parity distribution of women. Zero parity women denotes women without live births. The parity distribution of women showed a zero parity for 86.2 percent of women in age groups 15-19. The percentage of zero parity women decreases as the age of women increases. One to two parity women are mostly found in age group 20-29 years, whereas 3-4 party women are in age group 25-39 years. Women with parity 5 or above are mostly found in age group 30-49 years. (Table 6.1).

The parity distribution of women for rural and urban areas shows some variations. Results show that proportion of women in urban areas (36.1 percent) with zero parity was higher than rural areas (27.2 percent). This observation may be influenced by the higher number of urban women aged 15-24 years with zero parity against rural areas. The percentage of women with zero parity decreased steadily with age for both urban and rural women. (Tables 6.1 and 6.2).

Analysis of rural–urban differences in reported parities reveal that urban parities are lower than rural for all age groups. The decline in average number of children ever born indicates that Tanzania is on the path to fertility decline.

٨٣٥		Number of Children Ever Born										
Age Group	Number of Women	0	1	2	3	4	5	6	7	8	9	10+
Total	8,710,355	27.2	13.4	13.0	11.5	9.9	8.0	6.4	4.8	3.5	2.4	-
15 - 19	1,930,035	82.5	14.1	2.9	0.5							
20 - 24	1,699,798	26.2	31.7	25.5	12.0	4.2	0.5	-				
25 - 29	1,375,195	10.2	14.0	23.9	23.0	16.6	9.1	3.2	-			
30 - 34	1,152,769	6.2	6.3	13.7	18.8	18.9	15.9	11.8	6.9	1.5		
35 - 39	977,903	4.9	3.5	7.0	12.2	15.9	16.1	14.8	12.0	8.9	4.8	
40 - 44	840,003	4.8	3.4	5.6	9.0	12.8	14.6	14.9	13.6	11.9	9.4	
45 - 49	734,652	4.6	3.9	5.6	8.1	11.3	13.5	14.7	14.2	13.2	10.9	

Table 6.1: Percentage Distribution of Women Five year's Age group 15 - 49 by TotalChildren Ever Born; Tanzania Rural, 2022 PHC

Table 6.2: Percentage Distribution of Women Five year's Age group 15 - 49 by TotalChildren Ever Born; Tanzania Urban, 2022 PHC

		Number of Children Ever Born										
Age Group	Number of Women	0	1	2	3	4	5	6	7	8	9	10+
Total	6,020,739	36.1	16.7	15.4	11.8	8.3	5.0	3.1	1.8	1.1	0.6	-
15 - 19	1,199,845	92.0	6.9	1.0	0.1						-	
20 - 24	1,254,558	49.8	30.5	14.2	4.2	1.2	0.1			-		
25 - 29	1,089,825	22.2	26.4	26.9	14.6	6.6	2.5	0.8				
30 - 34	867,162	10.8	15.1	24.7	21.9	14.1	7.3	4.0	1.8	0.4		
35 - 39	669,094	7.2	8.5	16.8	21.4	18.5	11.9	7.6	4.3	2.6	1.2	
40 - 44	529,912	6.4	7.0	13.3	18.1	18.2	13.7	9.8	6.3	4.4	2.7	
45 - 49	410,343	6.2	7.1	12.4	16.3	16.9	13.6	10.6	7.5	5.5	3.7	

6.4 Parity Progression Ratios

Parity Progression Ratio (PPR) is one of the fertility measurements based on cohort data and uses the data on number of children ever born classified by birth cohort (age group). A PPR is simply the probability of having another child given that one has already had a certain number of children ever born. It measures the rate at which families are growing and likelihood that a woman with "n" children proceeds to "n+1" children. For example, if a woman has already had three births, it is the probability of her having a fourth.

Table 6.3 presents PPR by five years' age groups for women aged 15 – 49 years. The findings reveal probability of a woman having an additional child is high and stable between

81 to 95 percent up to the fifth child. After the fifth child, PPR decreases from 76 percent for the sixth child to 44 percent for the ninth child suggesting that most women with already high parity are likely to pursue additional childbearing.

Variation is observed between rural and urban areas. The results show that 56 to 80 percent and 46 to 67 percent of women aged 30-49 years in rural and urban areas respectively, are likely to have an additional child after the sixth child (Table 6.3).

Age Group	2	3	4	5	6	7	8	ę
anzania								
20 - 24	0.511	0.365	0.274	0.103	-	-	-	
25 - 29	0.769	0.612	0.515	0.404	0.257	-	-	
30 - 34	0.890	0.775	0.682	0.610	0.537	0.405	0.175	
35 - 39	0.941	0.876	0.795	0.726	0.679	0.610	0.521	0.34
40 - 44	0.949	0.905	0.846	0.783	0.735	0.673	0.594	0.43
45 - 49	0.947	0.910	0.865	0.812	0.764	0.698	0.614	0.44
Tanzania Rural								
20 - 24	0.571	0.394	0.280	0.106	-	-	-	
25 - 29	0.844	0.685	0.556	0.424	0.260	-	-	
30 - 34	0.933	0.844	0.745	0.656	0.559	0.416	0.174	
35 - 39	0.964	0.924	0.856	0.781	0.716	0.634	0.533	0.34
40 - 44	0.965	0.940	0.896	0.834	0.774	0.701	0.610	0.44
45 - 49	0.959	0.938	0.906	0.855	0.797	0.722	0.629	0.45
Tanzania Urban	1							
20 - 24	0.392	0.281	0.247	0.089	-	-	-	
25 - 29	0.660	0.477	0.405	0.331	0.246	-	-	
30 - 34	0.830	0.667	0.557	0.489	0.456	0.355	0.184	
35 - 39	0.908	0.801	0.682	0.598	0.569	0.518	0.468	0.32
40 - 44	0.925	0.846	0.753	0.670	0.628	0.578	0.529	0.38
45 - 49	0.925	0.857	0.780	0.708	0.668	0.613	0.551	0.40

Table 6.3: Parity Progression	Ratios by Age	, Residence
-------------------------------	---------------	-------------

Source: Tanzania, 2022 PHC

6.5 Population of Women who are Childless

The concept of childless, based on Shyrock and Seigel (1976), is the state of never giving live childbirth. UNFPA (1993) considers childless or infertility as the inability to conceive. The concept is tied to replacement or reproductively in the sense that a high proportion of childless women suggests that replacement may be low because capability of reproducing would now depend on women who can reproduce.

Analysis in Table 6.4 deals with women aged 45-49 years who are close to menopause or have reached menopause. The percentage of childless women at the end of the reproductive period (45 - 49 years) is an indicator of the prevalence of sterility in a population. This measurement, however, overestimates the realistic prevalence of sterility because some of the childless women at the end of reproductive period may not have had children for reasons not related to physiological ability to become pregnant or to give birth. Moreover, Census results indicate some of the women aged 45 - 49 years actually gave births in the last 12 months prior to the Census, so it is not definite that all these women would remain childless.

Findings from Table 6.4 shows that 5.2 percent of women aged 45 – 49 years were childless at the time of the Census in 2022. However, there are regional variations. Percentage of women aged 45 – 49 years without children ranged from 3.2 percent in Rukwa to 10.9 percent in Kaskazini Unguja. With exception of Mwanza and Katavi regions, percentage of women of age 45-49 years without children was higher in urban than rural areas (Table 6.4 and Figure 6.1).

In addition, proportion of women without children aged (45-49) years depends on whether they lived in rural or urban areas. Percentage of childless women is relatively higher among urban women (6.2 percent) compared with rural women (4.6 percent). This variation reflects various factors such as supportive customary fertility practices in rural areas and effects of modernization and urbanization in urban areas. Results further show the highest proportion (19.5 percent) of women without children aged 45-49 years who were living in Kaskazini Unguja followed by the ones residing in Kusini Unguja (9.8 percent) in Tanzania Zanzibar. This might be caused by presence of migrant women aged 45-49 years without children from other countries found in urban areas in both regions.

Greater access to education and career opportunities, changing social norms regarding marriage and motherhood and the desire for financial independence attribute to the high percentage of childless women aged 45-49 years in urban areas. Urban environment often provides women more choices and a focus on personal and professional development, leading some to postpone or forgo childbearing altogether.

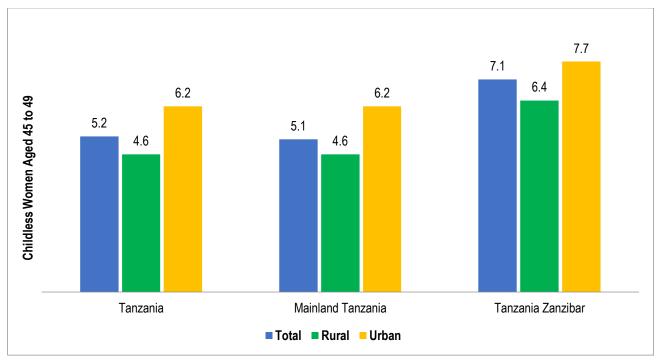
Residence	e					
Place of Residence	Num	ber of Women		Percentage o	f Women who	are Childless
	Total	Rural	Urban	Total	Rural	Urban
Tanzania	1,144,995	734,652	410,343	5.2	4.6	6.2
Mainland Tanzania	1,108,976	717,284	391,692	5.1	4.6	6.2
Dodoma	58,444	37,993	20,451	3.6	2.8	5.1
Arusha	46,629	25,741	20,888	4.5	4.0	5.2
Kilimanjaro	45,107	34,737	10,370	4.6	4.2	5.9
Tanga	57,175	41,906	15,269	3.3	2.8	4.7
Morogoro	40,731	24,115	16,616	5.3	5.1	5.6
Pwani	40,731	24,115	16,616	5.3	5.1	5.6
Dar es Salaam	112,699	-	112,699	7.0	-	7.0
Lindi	29,865	24,206	5,659	5.1	4.9	6.0
Mtwara	43,010	33,351	9,659	6.3	5.9	7.4
Ruvuma	39,491	30,797	8,694	4.8	4.5	6.0
Iringa	25,353	18,989	6,364	4.6	4.3	5.4
Mbeya	45,264	27,782	17,482	4.5	4.2	4.9
Singida	35,240	29,089	6,151	3.9	3.6	5.5
Tabora	51,376	42,310	9,066	5.3	5.2	6.0
Rukwa	23,170	18,114	5,056	3.2	2.9	4.2
Kigoma	41,816	30,636	11,180	9.1	9.1	9.2
Shinyanga	35,614	24,052	11,562	5.9	5.4	6.8
Kagera	56,718	50,126	6,592	3.7	3.5	5.1
Mwanza	65,148	39,336	25,812	6.1	6.1	6.0
Mara	43,381	29,801	13,580	4.8	4.5	5.5
Manyara	32,579	26,893	5,686	4.6	4.6	4.7
Njombe	20,564	15,505	5,059	5.3	4.6	7.4
Katavi	15,168	11,540	3,628	5.9	6.1	5.1
Simiyu	34,248	27,386	6,862	4.9	4.0	8.6
Geita	44,588	29,971	14,617	5.1	4.7	5.8
Songwe	24,867	18,793	6,074	3.6	3.3	4.3
Tanzania Zanzibar	36,019	17,368	18,651	7.1	6.4	7.7
Kaskazini Unguja	4,737	3,948	789	10.9	9.1	19.5
Kusini Unguja	3,877	3,114	763	9.3	9.2	9.8
Mjini Magharibi	17,486	2,952	14,534	6.9	5.7	7.1
Kaskazini Pemba	5,029	3,903	1,126	3.7	3.3	5.2

Table 6.4: Percentage Distribution of Childless Women Aged 45 to 49 by Place of Residence

Source: ; Tanzania, 2022 PHC

Kusini Pemba

3,451


1,439

5.8

4.7

8.5

4,890

Figure 6.1: Percentage Distribution of Childless Women Aged 45 to 49 by Place of Residence; Tanzania, 2022 PHC

6.6 Trend of Childless Women in the past decade

The trend of childless women aged 45 -49 years in Tanzania increased from 4.4 percent in 2012 to 5.2 percent in 2022. Although the trend shows an increase of 0.8, the 5.2 percent is within the acceptable range; however, the increasing trend is concerning. Similar trends are observed in Mainland Tanzania and in Tanzania Zanzibar. The increase is from 5.2 percent in 2012 to 6.2 percent in 2022 census in urban areas, whereas in rural areas is from 4.0 percent in 2012 census to 4.6 percent in 2022 census. The percentage of childless women aged 45-49 years is higher in urban areas than in rural areas both in Mainland Tanzania and Tanzania Zanzibar.

Table 6.5: Percentage Distribution of Childless Women Aged 45 to 49 by Place of Residence; Tanzania

	2012			2022			
Place of Residence	Total	Rural	Urban	Total	Rural	Urban	
Tanzania	4.4	4.0	5.2	5.2	4.6	6.2	
Mainland Tanzania	4.3	4.0	5.2	5.1	4.6	6.2	
Tanzania Zanzibar	5.2	4.7	5.7	7.1	6.4	7.7	

Source: 2012 and 2022 PHC

Chapter Seven

Summary, Conclusions and Policy Recommendations

7.1 Introduction

There is a strong relationship between levels of national development with nuptiality and fertility. The existing level of fertility has some implications to the development of the country and population dynamics and nuptiality is almost universal in developing countries (Kumar and Yadav, 2024; Todaro, 1992). Furthermore, nuptiality and fertility levels must reflect the national and international population goals and targets like the National Population Policy of Tanzania (2006) and the Sustainable Development Goals (2015-2030).

7.2 Nuptiality

Marriage remains a central institution, with most adults being in marital unions, though the proportions of single individuals (never married widowed and divorced/separated) increased between the intercensal period. The growing prevalence of divorced/separated individuals signifies changing attitudes toward marriage or unstable marriage institution. The distribution of marital status reveals significant variations across age groups, sex and regions. The findings revealed that marriage is still common practice in Tanzania. In addition, Singulate Mean Age at Marriage (SMAM) is relatively high in Dar es Salaam, Kilimanjaro, Mjini Magharibi and Iringa and relatively low in Katavi, Tabora, Rukwa and Songwe regions. The comparison between Singulate Mean Age at Marriage (SMAM) and age at first birth emphasises a critical demographic insight. Results reveal that, the age at first birth occurs earlier than the SMAM, reflecting occurrences of childbearing outside formal marital unions. Generally, this pattern is particularly notable among young women, pointing to shifts in society norms on marital status. The gap between these indicators has implications for policies aimed at reducing adolescent pregnancies and supporting maternal health.

The net nuptiality life tables, which assess the likelihood of entering and exiting marital unions across age groups, highlight significant gender differences. Women generally enter marriage earlier and are more likely to experience widowhood, while men have higher remarriage rates. These patterns emphasize the need for targeted support for widowed and divorced individuals, particularly women to address social and economic vulnerabilities. A key factor influencing nuptiality rates by sex is the difference in social roles and expectations placed on men and women regarding marriage. Women tend to marry at younger ages due to cultural norms that associate femininity with early family formation and childbearing. On the other hand men are often expected to achieve financial stability before marrying, which

can delay their entry into marriage. Men, on the other hand, are more likely to remarry after divorce or widowhood, contributing to higher remarriage rates among males. These gendered expectations and life course differences significantly shape nuptiality patterns by sex.

The average expected years to marriage at age 15 years (10.2 years) has remained more or less constant in Tanzania over the 2012-2022 intercensal period. The Law of Marriage Act (1971) allows girls to marry at 15 with parental consent and 14 with court approval, while the legal age for boys is 18. Raising the legal age at marriage to 18 years and ensuring consistent enforcement of marriage laws are critical steps for Tanzania. These reforms, together with supportive policies in education, health and economic empowerment, can help to protect children, promote gender equality and drive sustainable development. Furthermore, an observed increase of mean age at first marriage for girls from 19.1 to 22.1 years that has been seen between 1978 and 2022 censuses may lower fertility at large, since the length of reproduction span of women of about 30 years is reduced. Nonetheless, marriage at older ages may push women to bear children above age 35 years, which may risk maternal and child health.

The PHC results show that proportion of married females decreased from 69.5 percent in 1978 to 52.4 percent in 2022. The same trend is observed among males which decreased from 61.4 percent in 1978 to 50.3 percent in 2022. These results are supported by an increase in the average age at first marriage from 24.9 years in 1978 to 26.4 years in 2022 for males and from 19.1 years in 1978 to 22.1 percent in 2022 for females. The mean age at first marriage was higher in urban areas than rural areas. These results indicated that, to maintain and improve marital statuses at national levels, more interventions hinging on social and economic development should be initiated in all regions, with more emphasis to "less" developed and periphery regions. These include interventions on awareness creation among parents about the benefits of delayed marriage for girls. Further, implementation of programmes to keep girls in school longer including a "back to school" policy for girls who become pregnant and providing scholarships or vocational training would empower them economically. This may delay age at marriage, reduce fertility rates, and improve socio-economic outcomes.

7.3 Fertility Patterns, Levels, and Trends

Fertility level provides key demographic insights. The Total Fertility Rate (TFR) of 4.6 reflects a moderate level of fertility, indicating a transition from historically high fertility levels towards

lower levels. However, it remains well above the replacement level of 2.1. The Age-Specific Fertility Rates (ASFR) show a "broad peak" of fertility in the 20–29 years' age range, highlighting notable higher reproduction occurs within this age group. This pattern is typical of societies undergoing demographic and fertility transitions. The declining trend in the TFR from 6.9 in 1978 to 4.6 in 2022, signifies significant progress in access to family planning, education, healthcare and socio-economic development over time. NRR of 2.1 indicates that each generation is more than replacing itself, driving population growth in the absence of significant emigration or other demographic shifts.

Further the observed decline of TFR will ultimately lead to the decline in NRR (2.1) which is heading towards replacement level. Thus, there is a need to have a policy intervention targeting to sustain the ongoing fertility while addressing the challenges of population growth through prioritizing investments in health, education, and economic opportunities. In addition, regional variations in NRR (ranging from 1.3 to 2.9) underscore disparities in fertility drivers across the country, emphasizing the need for region-specific policies and human resources development interventions. This analysis highlights importance of sustaining efforts to improve fertility levels further through investments in women's empowerment, education, and reproductive health services. To this end, the National Population Policy needs to be reviewed to integrates the fertility challenges and observed dynamics.

7.4 Fertility Differentials

The findings revealed that, fertility is higher in rural than urban areas. Fertility is higher in regions around Lake Victoria and Western part compared to other areas of the country. The high level of fertility in these regions is consistent with the mean age at first marriage which is below the national average of 22 years. However, fertility is generally negatively associated with the educational attainment of the mother. The TFR decreases from 5.5 children per woman for women without education or attended pre-primary education to 2.3 children per woman for women with tertiary education (university or related). Women engaged in agricultural activities (farming, livestock keeping and fishing) have a relatively higher TFR (4.9 children per woman) compared with those in other occupations or not working (4.5 children per woman). The findings further reveal that work commitment and career advancement also limit employed and professional women from having many children. On the other hand, most of the unemployed women reside in rural areas where accessibility to family planning services is limited, thus indicating a higher chance of having more children in reproductive lifetime compared to counterparts in urban areas.

Fertility patterns in Tanzania highlight a significant regional, educational and employmentrelated disparities. Understanding these trends help to guide policy and decision makers on how to address fertility issues, especially in rural areas and among less-educated women. The rural and urban socio-economic disparities led to uneven distribution of the national cake which constrained poor household resources and limited economic productivity, especially in rural settings where incomes tend to be lower and employment opportunities are rare. Fertility differentials observed imply that existing interventions and programmes in place in Tanzania since 1974 (Ujamaa villages) have not been effective especially in rural areas. It is likely to be major cause of regional and occupational fertility variations over time among women living in regions around Lake Victoria and Western areas However, existing policies (e.g., National population policy, 2006 and Health Policy, 2017) are silent on women lifetime fertility associated risks to the entire community in relation to human reproduction systems. The fact that fertility is negatively associated with women education and occupational status, there is a need to review the existing policies to integrate and mainstream efforts to educate women on how to improve their socio-economic welfare. Educating women to tertiary levels often encourages delayed marriage, provides reproductive health knowledge and increase women's participation in the workforce.

7.5 Adolescent Fertility

Adolescent fertility in Tanzania demonstrates significant variation across geographic, socioeconomic, and educational contexts. The national Adolescent Fertility Rate (AFR) is higher in Mainland Tanzania (79 per 1,000) than in Zanzibar (25 per 1,000) with rural areas showing higher AFRs (95 per 1,000) than urban areas (45 per 1,000). Regional disparities on AFR revealed that Songwe has higher AFR (121 per 1000) while Mjini Magharibi has low AFR (19 per 1000). Adolescent fertility contributes 1.7% to the national Total Fertility Rate (TFR), with higher contributions in Mainland Tanzania (1.7%) compared to Zanzibar (0.5%). AFRs variations were determined by available socio-economic factors, education, employment opportunities and accessibility to healthcare services in respective areas. Education emerged as a critical determinant of adolescent fertility, with higher fertility rates observed among teenagers and households with lower educational attainment. Adolescents living in households headed with less income and uneducated individuals experienced early childbearing, which is associated with household poverty and limited access to opportunities. Marital status is a strong predictor of fertility, with ever-married adolescents experiencing significantly higher AFRs than never-married counterparts. This disparity reflects societal expectations, perceptions, limited reproductive healthcare and differences in socio-economic development between rural and urban areas.

The differential in AFR between Mainland Tanzania and Tanzania Zanzibar and between urban and rural areas, highlights partly the role of education in delaying adolescent childbearing. Policies should prioritize keeping girls in school longer including a "back to school" policy for girls who become pregnant. Additionally, the elevated AFR in rural areas, nearly double that of urban areas, calls for rural development interventions. Improving access to reproductive health services, family planning and economic opportunities for rural adolescents may reduce young age fertility rates. Community outreach programmes and mobile health services could bridge the urban-rural gap in access to health information and contraceptives. Since adolescent fertility correlates with poverty and the education level of the household head, policies that address socioeconomic disparities may help to lower AFR. Programmes aimed at improving household income, vocational training and skills development for young women in poor households could empower them economically and delay early childbearing. Addressing adolescent fertility requires a multifaceted approach for instance, prioritising and stating clearly the age and compulsory duration for girl child education in education policy, particularly in rural areas in regions with high-AFRs.

7.6 Lifetime Fertility

The trends of lifetime fertility in Tanzania have shown that childbearing is still embedded in culture and socio-economic development across regions. The phenomenon of having high parities is also still usual, for instance over 10% of women have parity 5 or above. Furthermore, proportion of childless women aged 45 – 49 years increased from 4.4 percent in 2012 to 5.2 in 2022. Percentage of childless women is relatively higher among urban women (6.2 percent) compared with rural women (4.6 percent). Childlessness is an indirect measure of the prevalence of sterility in a population, although it overestimates the actual prevalence of sterility because some of the childless women at the end of reproductive period may have not had children for reasons not related to physiological ability to become pregnant or to give birth. In addition, results show that the population of childless women who has not had any children by the time she reaches the end of her reproductive years, usually 45-49 years is increasing over time and vary across regions. It should be noted that, a high proportion of childless women suggests a possibility of low replacement because the capability of reproducing would now depend on women who can reproduce.

7.7 Existing Policy Gaps on Fertility Management in Tanzania

The existing policy on lifetime fertility for working or employed women provides employment entitlements to provision of social services such as health care, maternity/paternity leave and related services and is limited to four children of civil servants, either male or female. This child limitation may impact future TFR and NRR, thus calling for a policy change to provide unlimited children benefits thus enabling employed couples to have unlimited fertility. Although childless women often experience poorer lifetimes physical and mental health outcomes, existing policies (e.g. National population policy, 2006 and Health Policy, 2017) are silent on women lifetime fertility and associated risks. Tanzania does not have a specific policy exclusively focused on childless women. However, the National Strategy for Gender Development and National Gender and Women Development Policy address various aspects of gender equality and women's rights, which can indirectly impact childless women. These aim at ensuring that gender perspectives are mainstreamed into all policies, programmes and strategies, promote equality and empowerment for all women, regardless of marital or parental status.

7.8 Policy Recommendations

7.8.1 Policy Recommendations for addressing the TFR

- Youth Reproductive Health Education: Continue investing in reproductive health education targeted at young adults. Programmes should focus on informed family planning, early pregnancies health impacts, and safe reproductive choices resource availability.
- Social Support Systems for Parents: Expand social support programmes, including affordable childcare, parental counselling and young families' financial support. These services may reduce economic strain on parents and improve fertility.
- iii) **Demographic and Economic Planning**: Policy makers should adopt a forward-looking approach to demographic planning, focusing on sustainable economic development. Housing, healthcare, education and infrastructure investment would accommodate gradual population growth resulting from broad fertility peak.
- iv) Broaden Reproductive Health Services: Ensure availability and accessibility of reproductive health services and to women of 20 -34 years. This support may involve around increasing funding for maternal health clinics, family planning resources, and postnatal care.
- v) Flexible Work and Family Policies: Encourage or mandate family-friendly policies in workplaces to accommodate working mothers. Initiatives could

include paid parental leave, flexible scheduling, remote work options and on-site childcare services.

- vi) **Comprehensive Family Planning Programmes**: Strengthen family planning programmes that promote awareness and access to contraceptives, allow individuals to space births and manage family sizes according to personal circumstances. This approach could support women in balancing educational or career pursuits with family goals.
- vii) Strengthen education provision for Girls: Implement programmes to keep girls in school longer including a "back to school" policy for girls who become pregnant and provide scholarships or vocational training for economic empower. This would improve socio-economic outcomes.
- viii) **Fertility awareness counselling** to educate young women about age-related fertility declines and their implications.

7.8.2 Policy Recommendations to reduce the increasing percentage of Childless Women

- Government and other stakeholders to strengthen counselling programmes to young women about age-related, declines in fertility and the costs to future population declines to the nation and succession rates of reproductive health
- ii) Special programmes to enable women living in regions having alarming high percentage of childless women such as regions around Lake Victoria and Western parts to access reproductive health services at an affordable cost.
- iii) The fact that fertility is negatively associated with education calls for more efforts to be made to educate women to equip them with informed choice of family size and enable them to improve their economic welfare.
- iv) Provision of fertility awareness counselling to educate young women about agerelated fertility declines and their implications, promote public awareness campaigns on infertility and its treatment options, encourage early health checkups for couples planning to conceive.
- Mental health and social support to integrate mental health services into reproductive health programmes to support women experiencing involuntary childlessness. Establish peer support groups for childless individuals to foster emotional well-being.
- vi) Promote access to maternal and reproductive health services by providing affordable reproductive health services in regions with high childlessness rates.

- vii) Increase the access and availability of infertility treatments, including in vitro fertilization (IVF) and counselling and promote family planning services.
- viii) Monitor fertility trends by establishing data systems to track fertility trends, childlessness rates, and their underlying causes for evidence-based policy-making
- ix) Targeted research by conducting studies to understand the drivers of increasing childlessness, including socioeconomic, cultural, and health factors, to guide interventions.

References

Arriaga, E.E. (1983). *Estimating fertility from data on children ever born by age of mother.* International Research Document, No. 11, US Bureau of the Census, Washington DC.

Bledsoe, C.H. & Cohen, B. (1993). Social dynamics of adolescent fertility in sub-Saharan Africa, Washington: National Academy Press.

Bongaarts, J. (1978). A framework for analysing the proximate determinants of fertility. *Population and Development Review*.

Bongaarts, J., & Feeney, G. (1998). On the Quantum and Tempo of Fertility. Population and Development Review, 24(2), 271-291.

Bongaarts, J., & Casterline, J. B. (2013). *Fertility Transition: Is the Second Demographic Transition a Global Phenomenon?* Population and Development Review, 38(2), 255-288 Population and Development Review, vol 4, no. 1, pp. 105-132.

Brass, W. (1981). *"The use Gompertz relational model to estimate fertility," in Proceedings of the International Population Conference,* Manila, International Union for the Scientific Study of Population, vol. 3, pp. 345-362. Liège.

Collins, N. (1988). "Methods and Models in Demography", pp 58 -62

Guillaume, J.W. (1978) "Introduction to Demographic Analysis Principles and Methods" pp 152-155

Kpedkepo, G.M.K. (1982). Essentials of Demographic Analysis for Africa, Heinmann, London.

Kumar, N.K. & Yadav, D.P. (2024). Mathematical Analysis of Fertility in Nepal Using Arriaga's Approach, *Mikailalsys Journal of Advanced Engineering International*, Volume 1, (1) 14-22.

Kuznets, S. (1974). Rural-urban differences in fertility: An international comparison, *Proceedings of the American Philosophical Society*, 118(1): 1-29.

McDonald, P.F., Ruzicka, L.F., and Caldwell, J.C. (1981). *Interrelations between nuptiality and fertility: the evidence from the World Fertility Survey.* In, World Fertility Survey Conference 1980: Record of proceedings, vol 2, pp77- 126.

Michael, P. (1992). *Economics for a Developing World*, Addison-Wesley.

Mohammad, A., and Naushin, I. (1974). Net Nuptiality Tables for Males and Females in Pakistan 1962-65, *The Pakistan Development Review* Vol. 13, No. 1, pp. 55-65.

Ministry of Health, Community Development, Gender, Elderly and Children (MoHCDGEC), [Mainland Tanzania], Ministry of Health (MoH) [Zanzibar], National Bureau of Statistics (NBS), Office of the Chief Government Statistician (OCGS), and ICF. *Tanzania Demographic and Health Survey and Malaria Indicator Survey (TDHS-MIS) 2015-16*. Dar es Salaam, Tanzania, and Rockville, Maryland, USA, 2016. Ministry of Health, Community Development, Gender, Elderly and Children (MoHCDGEC), [Mainland Tanzania], Ministry of Health (MoH) [Zanzibar], National Bureau of Statistics (NBS), Office of the Chief Government Statistician (OCGS), and ICF. *Tanzania Demographic and Health Survey and Malaria Indicator Survey (TDHS-MIS) 2022.* Dar es Salaam, Tanzania, and Rockville, Maryland, USA, 2022.

Randall, S. (1996). Whose reality? Local perceptions of fertility versus demographic analysis. Population Studies, vol. 50, no. 2, pp. 221-234

Shapiro, D. and Tambashe, B.O. (2000). *Fertility transition in urban and rural areas of Sub-Saharan Africa.* Revised version of paper presented at the 1999 *Chaire Quetelet Symposium in Demography, Catholic University of Louvain, Louvain-la-Neuve, Pennsylvania State University.*

Shryock, H.S., Jacob Siegel et al. (1976). *Methods and Materials of Demography, Washington, D.C:* U.S. Government Printing Office

Sully, E.A', Biddlecom, A., Daroch, J., Riley, T., Ashford, L., Lince-Deroche, N. et al., (2020). Investing in Sexual and Reproductive Health 2019. New York: Guttmacher Institute.

Udjo, E.O. (1987). *A determinant of fertility and its cultural context among Nigeria's Kanuri.* In, Ebigbola and Van de Walle (eds.): The cultural roots of African fertility regimes, Ile-Ife, pp. 227-293.

Udjo, E.O. (1989). Age of marriage, polygyny, divorce, re-marriage, and effect on the fertility of the Kanuri of N. E. Nigeria. Contributed paper, International Union for the Scientific Study of Population XXIst General Conference (Session F21), New Delhi.

United Republic of Tanzania (URT), Ministry of Finance, Tanzania National Bureau of Statistics and Ministry of State, President's Office, State House and Good Governance, Office of the Chief Government Statistician, Zanzibar. The 2012 Population and Housing Census: Tanga Region Basic Demographic and Socio-Economic Profile Report; Tanzania, January 2016.

United Republic of Tanzania (URT), Ministry of Finance, Tanzania National Bureau of Statistics and President's Office - Finance and Planning, Office of the Chief Government Statistician, Zanzibar. The 2022 Population and Housing Census: Tanzania Basic Demographic and Socio-Economic Profile Report; Tanzania, April 2024.

United Nations, (1983) <u>Manual X: Indirect Techniques for Demographic Estimation</u>. ST/ESA/SER.A/81, New York.

United Nations. (2003). *Indicators for Monitoring the Millennium Development Goals*. United Nations Publications.

United Republic of Tanzania. 2006. Analytical Report 2002 Census, Volume X. Dar es Salaam.

United Republic of Tanzania. 2013. *Population Distribution by Age and Sex,* Volume II. National Bureau of Statistics and Office of the Chief Government Statistician.

Tanzania.United Republic of Tanzania. 2006. *National Population Policy. Ministry of Planning,Economy and Empowerment.* Dar es Salaam, Tanzania.

World Bank. (2018). World Development Report 2018: Learning to Realize Education's Promise.

World Health Organization (WHO). Adolescent pregnancy, 2024.

Appendices

Appendix 1: List of Contributors

Contributors to the Fertility and Nuptiality Levels and Patterns in Tanzania:

Census Commissars

Hon. Anne Semamba Makinda (Mainland Tanzania)

Amb. Mohamed Haji Hamza (Tanzania Zanzibar)

NBS/OCGS Chief Government Statistician

Dr. Amina Msengwa (NBS)

Salum Kassim Ali (OCGS)

NBS and OCGS Directors

Dr. Ruth Minja	Director of Population Census and Social Statistics – NBS
Emilian Karugendo	Director of Statistical Coordination, Research and Operations – NBS
Daniel Masolwa	Director of Economic Statistics – NBS
Daniel Ulindula	Director of Corporate Services – NBS
Fahima Mohamed Issa	Director of Demographic and Social Statistics – OCGS
Bakari Kitwana Makame	Director of Statistics Standard and Coordination of Statistics and Research Department - OCGS
Said Mohammed Said	Head of Statistics Office – Pemba – OCGS
Abdalla Khamis Abdalla	Director of Administrative and Planning - OCGS

Census Coordinators

Seif Kuchengo

Population Census and Vital Statistics Manager - NBS

Abdul-Majid Jecha Ramadhan	Manager for Demographic and Social Statistics - OCGS
Technical Advisor	
Prof. Akim Mturi	Internal Technical Advisor
Steven Lwendo	ICT Expert
Authors/Reviewers	
Edith Mbatha	Retired – Statistics and Monitoring Specialist UNICEF
Pro. Hurbert Hambati	Associate Professor University of Dar es Salaam
Aldegunda Komba	Retired Director of Statistical Operation
Nelson Jerry Ndifwa	Lecturer - EASTC
Philbert G. Mrema NBS	Demographer - NBS
Deogratius Malamsha NBS	Senior Statistician - NBS
Spatial Data Analysts	

Khalid Lewanga	Senior Assistance Cartographer – NBS
Yunis Nota	Senior Assistance Cartographer – NBS
Sarah Mohamed	Assistance Cartographer - NBS

Data Processing

Bakar K. Omar (OCGS)

Principal ICT Officer - OCGS

Appendix 2: Questionnaires

		Inited Rep Tanzani																										Al								EN	รเ	JS	his Act		SI	The S Unior	n Cen	sus	
_																			SE	стіс	ON A	: ID	ENT	TIFIC	САТ	ION																			_
		Region		Dist	trict		C	Counc	ii		Con	stituer	су		Divisio	n/Wa	di	v	/ard/SI	hehia			Villa	age/N	Itaa			Hamle	t/Enu	merati	on Ar	ea (E	A)		Hous	sehold	l Num	nber		c	ONFI	DENTIA	۰		
Α	01	Please S	tate	he ni	umbe	er all i	pers	ons v	vho S	pen	t he	e at	he (ens	us N	iaht																													
										2011							SE	стю	ON B	: DE	EMO	GR/	APH	ics	INF	OR	MA		1																
в	01	B02 H			ME	MBER	9						03 5		TION	енір	тот	HE HE		B	04 SE	×		BO	5 AG	=			BOF	MARI		ATUS				AGE 1	0+)			B07	N		HONE	AGE 1	(5+)
N		Please the ce Tueda startin	stat nsus y 23i	e the nigh d Aug	nam t, tha gust,	es of at is N 2022	all p /lond in y	lay ni vour h	ght b ouse	efor hold	e I,	V te	/hat	is th	e rel	atior	ship		AME]	ls	[NAN a fen	IE] a		Ho WF CO		d is [l AGE ETE ER O	IN YEA	RS.	Wh ma	atis o	urrei marri	nt ma ied, li	rital	statı	us of	[NAN , divo	1E]?		er	Plea of [N WRI	ISE GI NAME	ve the	mobi BILE	le nu	mber
		DO NO HOUSI NEARI SHIFT GUAR WRITE MEMB	EHO BY F S SU DS, I	LD ME JNER CH A TC.	EMB AL A S NU	ERS \ AND T JRSE	NHC THOS S, DO	SLE SE WO DCTO	PT IN DRKII RS, F	A NG N POLI	IIGH CE,		L Head	Spouse		_	_		 Not Related 		Male 1			WF YE	RITE	"00" AND	FOF	8 97			 Never Married 	c Married	ω Living Together	bivorced	on Separated	o Widowed	ω Not Stated					S AGE			
0	1																																												
0	2														T																														
0	3																																												
0	4																																												
0	5																																												
0	6																																												
0	7																																												
0	8																																												

																	SE	СТІ	ION	A :	IDE	ΝΤΙ	FIC/	A TIC	DN															
R	Regio	on		Di	istric	t		с	oun	cil		Co	nstitu	ency		Divisi	on/Wa	adi			Ward	/Shel	nia			Village/N	Mtaa		н		/Enu rea (l	merat EA)	tion		ouseh Numbe			CONFIDE	NTIAL	
													SE	сті	ON	C: IN	IFO	RM/			ON	DIS	ABI	_1TI	ES/	DIFFI	CUI		s											
B01		1 AL			CO	2 SE	EIN	IG					C0		RING							WAL					0	:05 R	EME	MBER	RING			C06	SELF	CARE				
No.		[NA binc] an	se		, ev	ven		ve dif earin		ty				have a hea			hear							iculty eps?						diffi		self		, suc		e diffic washi		
						No Difficulty	Induity	Some Difficulty	A Lot of Difficulty	Unable to See	Not Applicable			No Difficulty	Some Difficulty	A I of of Difficulty			Not Applicable			No Difficulty	Some Difficulty	A Lot of Difficulty	Unable to Walk	Not Applicable			No Difficulty	Some Difficulty	A Lot of Difficulty	Unable to Remember	Not Applicable		No Difficulty	Some Difficulty	A Lot of Difficulty	Unable to Care	Not Applicable	
							_	N Some	ы A Lot	4 Unabl	o Not A			N N N					5 Not A			IIO ON 1	2 Some	ы A Lot	4 Unabl	o Not A			N N N	2 Some	ы A Lot	4 Unabl	G Not A		IIO ON 1	2 Some	د A Lot	Iqual 4	G Not A	
1																																								
2																																								
3																																								
4																																								
5																																								
6																																							-	
7																																								
8			T				T																																	

				SECTION	A: IDENTIFICA	τιοΝ				
Region	District	Council	Constituency	Division/Wadi	Ward/Shehia		Village/Mtaa	Hamlet/Enumeration Area (EA)	Household Number	CONFIDENTIAL
										CONFIDENTIAL

																				S	ECI	101	NC		IF O	RV		Ю	NC		DIS	AB	ILI	ΠE	S/D	лн	-IC	UL	IIE:	S	
B01	•	C07	co	мм	UNI	CAT	ION					C08																	c	:09 C	AUS	E OF	DIS	ABILI	ТΥ						C10 ASSISTIVE DEVICES AND MATERIALS
No.	L c	LAN diffi exai	icul	JAG ty o le u	BE: com	Doe 1mu	es [l Inic	DN NAM atin ling	g; f	or	ng	follo	D A POI	ng? LL [·] NDE	TYP NT	ES C		SAE	BILIT	ries,	abili DIF					amo	ng t	he	FC	SK F ROM ODE Vhat	1 C0 : 1 II is th	2 TC N QL ne ca) CO JES ause	7 IF TION	COI N CO disa	DE 3 98 abilit	3 OR ty fo	4 O r [N/	R		ASK IF QC01 = 1 OR ANY QUESTION FROM QC02 TO Q07 = 3 OR 4 OR QC0 IS CODE 1 FOR B,C,D Does [NAME] has disability assistive devices or materials? Yes = 1 No = 2
			L No Difficulty		Some Difficulty	∞ A Lot of Difficulty			c Not Applicable			A Claff Dolate			O Spinal bifida	D Spinal cord injuries	m Epilepsy or seizures	H Psoriasis						A Person with short stature	r Leprosy	Z Person with hunchback				P Inborn	g Disease				m Beaten	H Contaminated water	0 Stress				
0 1																																									
0 2																																									
0 3																																									
0 4																																									
0 5																																									
0 6																																									
0 7																																									
0 8																																									

SECTION C: INFORMATION ON DISABILITIES/DIFFICULTIES

																										TIL		
												SEC	OIT	A I	IDE	NTIF	TI	ON										
_	Reç	gion		Distric	t		Cou	incil		Constituency		Division/Wadi		w	ard/Sh	ehia		Village/I	Mtaa	На	nlet/Enu Area (meration EA)	Ho	usehold	Number	r	CONF	
				_																								

SECTION D: MIGRATION INFORMATION

B01	D01 CITIZENSHIP	D02 DUAL CITIZENSHIP	D03 PLACE OF RESIDENCE	D04 WHERE RESPONDENT SPENDS MOST OF THE DAY TIME	D05 PLACE OF BIRTH
No.	What is (NAME) country of citizenship?	What is (NAME) countries of citizenship?	Which region/country does [NAME] usually live?	Where do you spend most of your time during the day?	In which region/country was [NAME] born?
	IF TANZANIAN, WRITE CODE 001 IF NON-TANZANIAN WRITE APPROPRIATE CODE, FOR DUAL CITIZENSHIP WRITE "888" ► IF THE ANSWER IS CODE OF RESPECTIVE COUNTRY GO TO DO3	WRITE CODES FOR THE COUNTRIES MULTIPLE RESPONSE IS ALLOWED	WRITE CODE FOR THE COUNTRY, REGION AND DISTRICT IF LIVING IN TANZANIA, OR COUNTRY CODE IF LIVING OUTSIDE TANZANIATHEN GO TO THE NEXT QUESTION	WRITE COUNTRY, REGION AND DISTRICT CODES IF SPENDS MOST OF THE DAY TIME IN TANZANIA OR COUNTRY CODE IF OUTSIDE TANZANIA THEN GO TO THE NEXT QUESTION CODES FOR THE 8th BOX Rural =1 Regional /District Headquarters =2 Other Urban= 3	WRITE CODE FOR COUNTRY, REGION AND DISTRICT IF BORN IN TANZANIA OR COUNTRY CODE IF BORN OUTSIDE TANZANIA. IF COUNTRY OF BIRTH IS UNKNOWN WRITE "99999999" ►IF THE RESPONDENT WAS BORN IN THE REGION WHERE THE INTERVIEW IS TAKING PLACE GO TO D10
0 1					
0 2					
0 3					
0 4					
0 5					
0 6					
0 7					
0 8					

																		SI	=C1	ΓΙΟΙ	ΝΑ	: 10)EN	TIF			ON																		
	Regio	n		D	istrict	:		с	oun	cil		Con	stituen	cy	Divi	sion/W	Vadi				ard/S						Villa	ge/M	Itaa		На	mlet/ Ar	Enun ea (E		ion		F	louse Num	ehold iber			CONF	-IDE		
	MM YYYY 1											Ś	SEC	стіс		D: 1	MIG	RA	тіс)N I	NF	DR	MA	тю	N																				
B01			D07		G PE	RIOD	D08	PRE	vious	RESID	ENCE	D09	MA	IN RE	ASO		R MIG	RAT	ION								D10	PLAC YEAF	E OF	RES	IDENC	E IN	D1	1 PLA	CE C	F RE	SIDE		I YEA	R 202	1				
No. When did [NAME] arrive to live in this Ho to live in this [NA region/country? livi reg WRITE MONTH AND YEAR OF ARRIVAL OF A VERENT PLACE CO									ig ha beei this Coun	n	livi hei	ing b	was [N pefore				at wa zani		AM	E's]	mair	n rea	ison	for	mov	ing	to th	is re	egio	n/to	In w was	hich	Reg ME]	ion livin	/Cou g du				ch R∈ ∃] livi			ounti 21?	ry w	as	
WRITE MONTH AND								APLE RS. NO RW	IF L NE	ESS	CO 02 AN FO TA CO UN	DE (FOR D CO R OU NZA	ANZAN DI FOR URB/ DUNTI JTSID NIA A RY IS DWN 1 099	R RUF AN AF RY CC E ND IF	RAL, REA DDE																COL DIS ⁻ TAN COE TAN THE	INTR TRIC ZAN DE IF ZAN NE	(Y, R T IF IA, C F LIV IA TI (T QI	EGIO LIVI DR C ING HEN UES	DR TH DN A ING I OUN OUT GO T TION	ND N TRY SIDE FO	R T LI G A	EGIC ANZA VINC O TC	ON AI ANIA G OU D THE R CH	ND D , OR TSID E NE	ISTI COL E TA XT C	RICT JNTR ANZA QUES AGEI		INTR VING DDE THEI I ' DO O E0	S IN IF N
	мь	л	Ŷ	YYY													C To take up a paid job		Control workgreen paskuretaiens Studyfraining		Family moved/joining fam	dical treatment/health c	Conflict/insecurity/natural dis	Looking for suitable site for fishery a			D Moving into a new homestead	Vision international states of the second stat			PER		S AC		FOR 11 Y	EAR	6								
0 1	11 D06 TIME OF ARRIVE 0. When did [NAME] arrive to live in this region/country? WRITE MONTH AND YEAR OF ARRIVAL OF A CURRENT PLACE MM YYYY 1																																												
0 2	01 D06 TIME OF ARRIVE No. When did [NAME] arrive region/country? WRITE MONTH AND YEAR OF ARRIVAL OF A CURRENT PLACE MM YYY 1 2 3 4 5 6																																												
0 3	01 D06 TIME OF ARRIVE No. When did [NAME] arrive region/country? WRITE MONTH AND YEAR OF ARRIVAL OF ARRI								Π													T						T																	
0 4	001 D06 TIME OF ARRIVE No. When did [NAME] arrive to live in this region/country? WRITE MONTH AND YEAR OF ARRIVAL OF A CURRENT PLACE MM YYYY 01 0 02 0 03 0 04 0 05 0 06 0																																												-
0 5	D1 D06 TIME OF ARRIVE D Io. When did [NAME] arrive it o live in this region/country? III WRITE MONTH AND YEAR OF ARRIVAL OF A VOURRENT PLACE VOURRENT PLACE VOURRENT PLACE MM YYYY I IIII IIIII 2 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				T	Ħ			Ħ										1				1		T																	T			
0 6	D06 TIME OF ARRIVE 0. When did [NAME] arrive to live in this region/country? WRITE MONTH AND YEAR OF ARRIVAL OF A CURRENT PLACE MM YYYY 1							T	\square													Ť						T													T				+
0 7	11 D06 TIME OF ARRIVE 0. When did [NAME] arrive to live in this region/country? WRITE MONTH AND YEAR OF ARRIVAL OF A CURRENT PLACE MM YYYY 1																					1						1																	Ŧ
			-												-				-			-		-		-		-	+	Ħ									Ħ						+

																	SE	стю	NA:	IDE	NTIF		ION																
	Re	gion			Distric	:t			Cour	ncil		Co	nstituen	су		Divisio	on/Wadi		w	ard/SI	hehia		Villag	e/Mtaa		Hamle		imeratio EA)	n Area			House Num				CONF	DENTIA	L	
_										s	ECT		E: INF	ORI	ΙΑΤΙ	ON O	N POS	SES	sioi	N OF	NA.	TION		осим															
	B01	E01	BIRTH	CERTIFI	CATE,	PASSP	ORT, A	ND HE		NSURAN	CE	E02	OTHER D	ocu	IENTS	- FOR P	ERSON A	GED 18+	•					E02F EN	TREPRI	NEUR ID	- FOR	PERSO	N AGED	E03	3 SU 18)		L OF PA	RENTS	(APPLIC	ABLE TO	PERSON	S BELO	W AGE
	No.	Does	[NAM	E] hav	e the f	ollow	ing Id	lentifi	cation	?		Does	[NAME]	hav	e the f	ollowi	ng Natio	nal Do	cume	ents?				► IF DO THIS QU			NIAN	DON	ASK				ather Aother						
		1	= 1 No										1 No :											Does [N	AME]	nave sn	nall ei	ntrepre	neur ID	? Yes	; = 1	No	= 2	Don't	Know	= 9			
			STION D 60 YI				ASKI	ED FO	OR A P	ERSON							ON'T ASI							Yes = 1	No =	2 Don	't kno	w = 9											
												E02A1		or B I	SCOL	DE 1, A	SK, Plea	se, me	ntion	Natio	onal IL	num			E 2 OR	9 SKIP	то е	03											
												E02C1		DE C	IS 1,	ASK, P	lease, n	nentior	n Zan:	zibar	ID nur	nber o		E02F1: Entrepre						·									
												-	-											IF ID IS REMEM CODE "	NOT F	DUND (HE ID N	OR DO	DES NO	т										
				 Birth Certificate 	α Birth Notification	ი Travel Passport	Dational Health Insurance/ Community Health Insuarence	m Other Health Insuarence	 Card for elderly treatment 			National ID (NIDA)	α National ID Number (NIDA)	O Zanzibar ID	Driving Licence	m Voter's ID	FILL II	DNUME	BER						FILI	ID NUM	MBER						Γ	Fathe	-	Moti	ner		
				~												-							_							+	-								
	0 1				-																										_								
0	2																			_									_										
() 3																																						
(9 4																																						
() 5																																						
(6																																						
(0 7																																						
(8																																						

												SEC	TION	A: I	DEN	TIFI	САТ	ION															
	Regio	on		District		Council		Constitu	iency	Divi	sion/Wad	i	War	d/She	hia		Villa	age/M	Itaa		На	mlet/E	Enume (EA	eration	Area			sehold mber				FIDENT	
																															con	DENT	
							SECTI	ON F	: EDI	JCA.	TION IN	NFOF	RMAT	ION	- AL	L P	ERS	ONS	s ag	ED	4 Y	EAF	rs c	OR A	BOV	Έ							
B01	F01	READ	ING A		F01/	A NUMERACY		F02	sсноо		ENDANCE		F03	REASC		SCH		ROPO	UT - 4	TO 24	4 YEA	RS					F04	LEVE		EDUC	ATION		
No.	write Kisv Kisv	e a sh vahili,	ort se Engl and E	nglish or	ariti sub	n [NAME] do a hmetics additi straction, divi tiplication?	on, [']	partia	ally atte	ended	tly attend I, comple I school1	eted	What	was	the ma	ain re	ason	for [N	NAME] scł		dropo	out/n	ever a	ttend	ed?	Wha	t leve	lofe	duca	tion h	2 OR 3 as [NAI attendi	
	Kisv Eng Kisv Othe	vahili lish = vahili	= 1 2 and E guag	inglish = 3 es = 4		= 1 No = 2		Partia Comj Neve	attendi ally atte pleted = r attend CODE	ended =3 ded =4	=2	⁻ O F04	6 Financial Constraints					-	 Iruancy/retusal Indispine behaviour 		B To work/looking for work	© Caring for the sick/children	0 Marriage	Difficulty/dangerous	5 Unfriendly infrastructure	E Not started school		-			-	TE COE	
											_			_		_		_												_			
0 1																																	
0 2																																	
0 3																																	
0 4														Ŧ																			
0 5			-											+	-	-	-	-	-	-		_								-			
0 6			-											+			-													-			
0 7														+																			
0 8														+																			
CODE	S FO	R F03						_							_	_		_													-		
Educat				Code		Secondar	y Educa	tion			Educat	tion at	ter Pri	mary/	Secor	ndary	Scho	ol															
Pre Pri	mary			00		Education			Code		Educatio					-		ode	1														
Std 1				01		Pre form one			18		Universit	y and of	her relat	ed				15															
Std 2				02		Form 1			09		Training	after Pr	mary Ed	ucatior	n			16															
Std 3				03		Form 2			10		Training	after se	condary	educat	ion			17															
Std 4				04		Form 3			11		Unit (Peo health dis			disabili	ties/me	ntal		19															
Std 5				05		Form 4			12																								
Std 6				06		Form 5			13																								
Std 7				07		Form 6			14																								
Std 8				08																													

									SEC																		
									JL							•											
-		_								_																· •	
	Region		Dist	trict	Col	ıncil		Constituency	Division/Wadi		Wa	rd/She	hia		Village	e/Mtaa		Hamle				House	ahold N	lumber			
								,										A	rea (EA	A)						CONFIDENTIAL	
																					1 [
-		_					_							-			-							-	-	*	

SECTION G: INFORMATION ON ECONOMIC ACTIVITY - ALL PERSONS AGED 5 YEARS OR ABOVE

Т	B 04							-																			
	B01				NG LAST W			G02											SEEKIN					AVAILAE			
	No.	fol ma	lowing any ho	j work/a urs?	ctivity did	week, which I [NAME] do IEGORIES		any you E		OF TEM OF TEM BS: LEA TO A JC	, or far n and d IPORAR VE, STO DB TEMPC	ming or lefinitely Y ABSEN OD DOW	other a y you w ICE /N, ILLNI	ectivity vill retu ESS, ST	to gene rn to? UDY LEA	VE BUT S		steps weeks	during to loc busin	the p k for a ess o	oast fou a paid je r an act	r ob or	availal job,or farmin genera	sent ard ble to ta do any ng or an ate inco tunity a	ake up / kind ny activ ome if	a paid of busi vity to such	-
			L To take up a paid job	 E 1 Do activity or business for generate b income/help a family member in paid job c business? 	3	Own account work - Prepare or Down account work - Prepare or preserved food or drinks for storage/Construction work or help a family member with similar	ch Did not do any work or activity		CODE 1	<i>IPORAR</i>	Y ABSE Yes No		1	RS SHOI	JLD NOT	BEINCL	UDED		Set Action of the set	<u>2</u>			► FOF		2 2 NSWE	R SKIP '	TO G08
	0 1																										
	0 2																										
	0 3																										
	0 4																										
	0 5																										
	0 6																										
	0 7																										
	0 8																										

																		SEC	стю	N A																				
		Region		Distric	t		Council			Co	onstitu	ency				Division	/Wadi			Wa	rd/Shehia	Vi	llage/Mt	aa	H	amlet/Er	numera (EA)	ation Ar	a		Hou	sehold	Numbe	ər		CONF	IDENTI	AL		
										s	БЕСТ	ION	G: IN	IFOR	МАТ		ON E	CON	IOMI	C A		ALL PEI	RSON	IS AG	ED 5 Y	EARS	6 OR	АВО	VE								<u> </u>			
B01	G	005 OCCUPA	TION					G06	OWN	IER OF	THE E	NTERP	RISE								G07 MAIN EC	DNOMIC AC	τινιτγ			G08	MINI	NG AND	QUARR	YING A	TIVITY				 G09	EMPLOY	MENT S	TATUS		
No.	AE M/	NUMERATO BOUT [NAMI AIN JOB IS PEND MOST	e's] M The O	AIN JOB (OR BUSI	INESS. Y DU USUA	OUR		ur ma	ain wo	ork, w	ho is 1	the ov	ner of	the er	nterpri	se?	1			What is the m place where [NAME] wo	rk[s]?			the c the f	lay be	e perio fore th ing min	e cens	us Nig	ht, Dic	I [YOU	/NAME		In [YO [YOU/	UR/NAI NAME]	ИE's] jo work a	b, [do/ }?	does]	
		HOSE WHO																			WRITE ACTIV WORDS	ITY FULLY	OR A	T LEAS	T IN TWO		COD	e "z" s	КІР ТО	QN. (G10									
	ln do	main job, w o?	nat ki	nd of worl	k does [NAME] u	usually					institution														REA	D RES	PONS	ES											
		RITE OCCU ORDS	ΡΑΤΙΟ	N FULLY (OR AT L	EAST IN	N TWO					, Non-profit	embassy																											
												litical party,	foreign		operative		er	activities																						
									E		ation	iisation, po	lization or	(non-farm)	ship or coc	ε	estic worker	economic															s			ployees	employees		by status	
									overnme	ernment	Organiz	ous orgar	ial orgar		d partnel	familily farm	old(s) dom	ehold - Other	ate													gems	mag suc			without em	with empl		ifiable	
									Central Government	Local Governm	Parastatal Orga	NGO,religio	International organization	Private business	Registered	Own or fai	Household	Household	Other Private								ite		pug		ne/gravel	Other precious g	non-precious	licable	Employee	plyed wi	employed w	worker	s not clas	
											03	04	05	06	07	08	09	10	11								Tanzar	Gold	Diamo	Sands	stone/g	Other p	Other r	Not Applic	Paid Fr	Self Emplyed	Self en	casual	Workers	
	DE	ESCRIPTION	1			TASCO C	ODES														DESCRIPTION	1		ISIC C	ODES		A	В	С	D	E	F	G	z	1	1 2	3	4	5	
0 1																																								
0 2																																								
0 3																																								
0 4																																								
0 5																																								
0 6																																								
0 7																																								
0 8																																								

																				SE	TION	A: I	DENT	TIFIC	ATIO	1																				
	R	egion			C	istrict				Counc	sil			Cons	tituency		Di	ivision/Wa	adi		,	Ward/S	Shehia				Villa	ige/Mtaa			Hamle	et/Enume	ration /	rea (EA)		H	Househo	d Num	ber							
																			-						-														-			CONFI	IDENTI	AL	-	
																																													-	
														S	стю	NG:	NFO	RMAT		N ECO	NOM	IC A	сті	ITY -	ALL I	PERS	ONS	AGE	0 5 Y	'EARS	OR A	BOVE														
B01	G10	AGRIC	ULTU	RAL AC	тіліті	s						G11	түре	S OF	ROPS					G11A LEGAL RIGHT OVER THE OWNERSHIP								G12 TYPES OF LIVESTOCK						G13 TYPES OF FISHERY AND ACQUACULTURE				G	14 TY	PES O	F FORE	ST TRE	ES			
No. Does [NAME] involved in agricultural activities during 2021/22 agricultural year? MULTIPLE RESPONCE IS ALLOWED				F	Fill Crop Type Codes (At most two)						What legal right do you have over the ownership of the land used for crop production in the aagricultural year 2021/22?							Fill Livestock Type Codes (At most two)					1	Fill Capture Fishery, Acquaculture Activity and Sea Weeds production Codes (At most two)																						
► IF CODE Z SKIP TO QN. G15																Inre																														
			> Crop Farming	m Livestock Keeping	r and ish farming, do	production etc)	C Forestry/ I ree Activity	Not Applicable				FIF	RST CF	ROP		SECON	D CRO	P					O Contract	D Rented	m Share cropped	The second secon	O Doesnot own	N Don't know		1st LIVE	ESTOCI	(2nc	1 LIVE	втоск	1	1st AC	TIVITY	2nd /	ACTIV	ITY	1st		VITY	2nd	ACTIV	ITY
0 1			-		-	-															-	+	-	-			-				_							1			+			-		_
0 2			-			+		-				-	-			-	-	-	-		+	-	-	-			-	+	++		-	-	-				-		-	++	+	+	-		-	+
0 3						-		_			-	-				-	-		-		-	+	-				-	+	++		-		-			-			-		+	-			-	+-
0 4			-			+	-	_				-		_			+	_	-		-	-	_	_				+	++	_		-	-	_		-			-	++	+				-	-
0 5			-		_	+		_			-	-		_	_	-	+	_	-		+	-	-	_				+	++	_		-	-	-		-			-	++	+		-		-	+-
0 6			-			+						-	-			-	+	-	-		-	+	-				-	+	+			-	-				_		-		+				-	-
0 7								_								-	-		-		+	-	-				-	+			-		-			-			-	++	+		-			+
0 8			-		_	-	-	_					-	_		-	-		-		+	-	-	_			-	-	1		-	-	-						-	-	+		-			-
Codes for	COL. G1	11				-					_						-				-	-						-			-	_			_						-		_		-	
laize					11		Field	peas					37	Bar					71						215 Seaweed				19				Codes for COL							odes for COL. G13						
Paddy					12		Fiwi						101	Avo	cado				72	Ras	sberry				2'		Cashe	ew nut				46		Cattle					1		· ·	e Fishe				1
Sorghum					13	_	Sunf						41	Mar					73					2	_				51				Goat			2			e	etc exclude sea weed)			2			
Bulrush Mil					14 15		Sesa	ime indnut					42 43	Pap	aw eapple				74 75	Lim					8						52 53		Sheep Pig		3 4					eed Pro plicable	oductio	1		3 9		
Vheat					16		Palm						44	Ora					76		bage				8		Coffee					54		Horse					5		tot Ap	meable				
Barley					17	_	Coco	nut					45	Gra	pes				78	Spi	nach				_	8	Теа					55		Donkey					6				DL. G14	1		
Cassava					21			ibeans					47	-	Idarin				79	Car					8		Cocoa					56		Chicken					7		Bee Ke				1	_
weet Pota					22 23	_	Cast	er seec	3			_	48 50	Gua					80 81	Chi	ies iranths					0	Rubb	er r cane				57 60		Duck Turkey					8 9			tion of antation	Seedlin	ıg	2	_
ams					24	_	<u> </u>	y apple	e			_	38	App					82		pkins				9	_	Carda					61		Rabbit					10			Produc			4	_
Cocoyams					25			d fruit					67	Pea					83		umber				9	_	Jute					62		Other live	stock				98	(Sather	ing and	d Huntir	ng	5	
Dnions					26	_	Jack						69		ches				84		Plant				9	_	Cinna	mon				64		Not Appli					99				activitie		8	_
Ginger					27		-	ion Fru	uit				70	Dur					97		er Mello	n			9		Clove					66							-			plicable			9	
Garlic					28		Sola	num Ni	igrum			9	903	Rar	nbutan				99	Cau	liflower					6	Olive					110														
Beans					31		<u> </u>	rd gree	ens				904		tard Ap	ole			200	Okr						0		n Tomat	o			300														
Cowpeas					32			efruit					77		I Fruit				201		ander s	eed				12		n grass		307																
Green gran					33	_	Pom					_	68	Plu					203		atoes				8	_	Other					998														
Pigeon pea	a				34	_	Bilim					_	98	Dat					210		te eggp				8			okin leav				906														
entils					35	_	Star					_	39	Van					212		en pepp	er			90			Pepper				18														
ampara n	ambara nuts 36 Nutmeg				36		INUT	ieg					65	Stra	wberry	_			213	Bro	:01	_			90	CI	Not a	pplicabl				999														

				SECTION	A: IDENTIFICATION				
Region	District	Council	Constituency	Division/Wadi	Ward/Shehia	Village/Mtaa	Hamlet/Enumeration	Household	
						_	Area (EA)	Number	CONFIDENTIAL

SECTION G: INFORMATION ON ECONOMIC ACTIVITY - ALL PERSONS AGED 5 YEARS OR ABOVE G15 INFORMAL ECONOMIC MACHINGA G16 ECONOMIC ACTIVITY G17 BUSINESS LOCATION G18 G19 CURRENT CAPITAL (TZS) G20 MAIN SOURCE OF CAPITAL B01 UNION FEDERATION -Does [NAME] engage in What is the main activity of [NAME]'s Currently, how much capital does What is the main source of [NAME]'s capital? No. In which area does SHIUMA any informal economic business? [NAME] mostly work? [NAME] have? MEMBERSHIP activitiy? Is [NAME] a Own sources (Personal savings from salary/crops salary/crops member of Cooperatives Government assistance Government Donor Assistance/Loan Fun WRITE ACTIVITY FULLY OR AT LEAST IN 1,000,000 - 9,999,999 etc) Machinga Union Employer Assistance Loan from SACCOS/VICOBA more Loan from Employer Loan from SHIUMA TWO WORDS 199,999 499,999 999,999 n Pension NSSSF, e Yes = 1 | No = 2 ų Federation Banks Less than 10,000 10,000 - 49,999 **666**'66 Private persons assistance (friend (SHIUMA)? 10,000,000 or ▶ IF CODE 2 SKIP TO H01 Loan from Co associations Ge Loan from Loan from 100,000 -Loan from (PSSSF, N Yes = 1 50,000 -200,000 -500,000 -TASAF No = 2 DESCRIPTION ISIC CODE 7 2 5 7 13 1 2 3 4 5 6 8 1 3 4 6 8 9 10 11 12 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 CODES FOR QUESTION G17 WITHOUT PERMANENT PRIMISES WITH PERMANENT PRIMISES 01 Hawking/mobile Permanent premises in a market (shop, kiosk, shed) 12 02 Improvised post on the roadside 13 Workshop, shop, restaurant, hotel 03 Permanent post on the roadside 14 Taxi station in permanent structure/ Public transport with fixed route 04 Vehicle, motor bike, Tricycle, Bicycle 15 Bicycle /Boda boda/ Tricycle stations 05 Customer's home Mining site 16 In my own/partner's home without special installation 06 17 Farm/fishing or grazing area Online bussiness 07 18 Industrial area 08 Improvised post in a market 19 Other area with permanent premises 09 Garbage area 20 In my own/partner's home with special installation 10 Construction sites 11 Other without permanent premises

												SE	-CT	ION A	: IDEI	NTIFI	CATIC	DN											
Re	egion	H01 OW Does [NA on agric ointly wi ► IF THE O H03	Dist	trict		Council		Constit	tuency	Div	vision/W	adi	w	/ard/She	hia	Vil	age/Mtaa	1	Hamle	t/Enum	eration	Area (EA)	Househ	old Num	ber	CON		TIAL
								S	ECTIC	DN H	: LAN	ID OV	VNE	RSHI	P AND		ORMA	ΤΙΟ	N RE	GAR	DING	ІСТ							
01				LÆ		OWNERS	HIP - J	ALL PE	ERSON	s								INFC	ORMAT		EGARD		- 4 YE	ARS O	R ABOV	/E			
lo.	но	01 OW	NERSHI	P OF LA	ND		н	02 TITI	LE DEED				•	103 EQ			ERSHIP	н	04 EQU	JIPMEN	TS USE	D	HOS	EQUI	PMENT U	SE			
	nor	n agric	ultural	land e	ither	ultural o alone or			ME] ha ame on		e deed	with	ec	id [NAM quipmer onths?	nts in tl			eq	d [NAM uipmer onths?			llowing t 3	[ΥΟΙ	J/NAM	the foll ∃ you u o = 2 D	se the	equip	ments?	
			ANSW	/ER IS	4 OR	9 SKIP							YE =	ES = 1 9	NO = 2	Don	t Know	9				t Know =	=	•	CATEG			•	
																			IF COD .L. SKIF			9 FOR							
				Both alone and jointly	town	ð				Both alone and jointly	leed	Mo		ne/Tablet	æ									ation	Search/receive information	sness		Playing games/Entertainment	Sending and receiving money
		Alone	Jointly	Both alor	Does not own	Don't Know		Alone	Jointly	Both alo	No title deed	Don't Know		Smart phone/Tablet	Mobile phone	Desktop	Laptop		Smart phone/Tablet	Mobile phone	Desktop	Laptop		Communication	Search/rec	Online buisness	Learning	Playing games/Ent	Sending al money
		1	2	3	4	9		1	2	3	4	9		Α	В	С	D		Α	В	С	D		A	В	с	D	Е	F
1																													
2																													
3																													
4																													
5																													
6																													
7																				1									
=										_																			

											SI	ЕСТІС	N A: II	DENTIF	ΙCΑΤΙΟ	N												
		Region		Dist	trict	Council		Constit	uency	Division/W	Vadi		Ward/SI	nehia	Vill	age/Mtaa		Hamlet A	/Enume rea (EA			Hous	sehold N	umber		col		
							SE	стю	I I:INF	ORMATIC	ON O	N FE	RTILIT	r - FEN	ALES /	AGED 1	10 YE	ARS	OR A	BOVE								
B01						CHILDRE	N EVE	R BOR	N - CHI	LDREN SURV	/IVING	;										FE	RTILITY I	N LAST 1		ITHS FOR		ED 10 TO 49
No.	10	01 BIRTH				102 BORN	ALIVE	IN HOUS	EHOLD		103	BORN		NG ELSEW	HERE	104 CI	HILDRE	N DIED				105	CHILDE					
		ave you e	_		e birth		NAME	and a	e now	en were borr living with	boi	n alive		nale child IE] and a	iren were e now	born a	live to		E] and	ildren are no		bor	n alive	to [NAN	1E] in	the last	hildren wh 12 month 0ST, 2021)	
	Ye	es = 1 N	lo = 2							NY OF HER					IVING								HERE	S NO C	HILD	SURVIV		E ''O''
	►		E "2"	SKIP Т	O 104	CHILDRE		1E00			EL	SEWHE	RE WRI	E .00.		WRITE		HERC	HILDRI	EN HAS	DIED	► I 12 I	NONTH	S WRIT	E "0"	THEN O		THE LAST
																► IF 0 J01	QN 101	I = 2 AM	ND 104	= 0 SK	ІР ТО		V FEIMA	LES AC	3ED 9	U YEAR	S OR ABO	
																	_											
						FEMALE	MA	LE			FEI	MALE	MALE			FEMA		ALE						MA	LE		FEN	ALE
						PEMALE																						
0 1																												
0 1 0 2																												
0 2																												
0 2 0 3																												
0 2 0 3 0 4																												
0 2 0 3 0 4 0 5																												

				SECTION	A: IDENTIFICATION			
	Region Distri	ict Council	Constituency	rision/Wadi	Ward/Shehia			ehold nber CONFIDENTIAL
	Was there any death w AUGUST 2022 - 23 AU Yes = 1 No= 2	FION ON DEATHS THAT	CTION J: INFORMATION OCCURRED IN THE HOUSEHO ousehold during the last 12 mo	LD DURING THE		ORGET CHILDHOOD MORT	ALITY	
J03			SED; AND CAUSE OF DEATH				AN AGED 10 TO 49 YEARS	
Death Serial Number	J04 SEX OF DECEASED Was the deceased a male or a female? Male =1 Female =2	J05 AGE OF DECEASED How old was the deceased at the time of death? WRITE AGE IN COMPLETE YEARS. IF UNDER ONE YEAR WRITE "00" IF 97 YEARS OR ABOVE WRITE '97'	Road Accident Other Accidents Suicide Domestic Violence/Homicide Sickness/Disease	death? Martenal Death Killed Unspecified reasons 8 Unspecified reasons	J07 DURING PREGNANCY Did the death occur during pregnancy? Yes = 1 No = 2 ► IF CODE 1 SKIP TO QUESTION J10	J08 DURING CHILDBIRTH Did the death occur during childbirth? Yes = 1 No = 2 ► IF CODE 1 SKIP TO QUESTION J10	J09 DURING SIX WEEKS Did the death occur during the 6 weeks period following the end of pregnancy, irrespective of the way the pregnancy ended? Yes = 1 No = 2	J10 PLACE OF DEATH ASK IF QJ07 OR J08 OR J09 = 1 Did this death occurred at home or in health facility? Home = 1 Health facility = 2 On the way = 3
0 1								
0 2								
0 3								
04								
0 5								
0 6								
0 7								
0 8								

																					SE	сті	ON	A: I	DE	ΝΤΙ	FIC	АТ	ION																							
	R	egio	n				Dist	rict			Counc	il		Cons	titue	псу		Divis	ion/V	/adi		`	Vard	/Sheł	lia		v	illage	/Mtaa	•		Har	nlet/Er Area			'n			Hou: Nu	seho mbe						CON	IFIDI	ENTI	IAL			
																																		_										İ							_	
												s	EC	ΤΙΟΙ	ΝK	: н	วมะ	SIN	GΟ	WN	ER	SHI	Р, С	ON	DIT		NS,	сн	AR/	AC	TER	IST	rics	A	ND .	ASS	ЕТ	s														
K01 OW	NERS	SHIP (OF T	ΉE	но	JSE/I	BUILI	DING			ко	2 LEG	AL R	IGHT (OVER	тне	owi	IERS	HIP			K03 R	OOFI	NG M			;					ĸ	04 FLC	ORI	ING M	ATERI	ALS					ĸ	05 W	ALL N	мате		LS					
What is used b							of	the n	nain	dwellin	- ov	hat le vners uilt?								use i		What the m									for		/hat is or the																terial hous			r
► IF C	ODE	E 2 o	or Al	BO	VE	SKI	э то) K03	i																Γ																								7			
K06 R0		1 2	2 3	3	A Rented by	B Rented by Government at susdize	_		 Owned by employer - with rent 		KO	7 MAI	D Title deed		3 4	5	6	 Official document 	8	TER			, Iron chaote			+ Asbestos	on Grass/Leaves	Mud and Leaves	7	8 Tent		out		2	α Parquet or Polished wood	4 5	6	2 Palm/Bamboo	α Earth/Sand	o Dung	Tent/Containers		L Stones							co Glass/Aluminium		
How m							le fo	or sle	epin	g in thi		hat is									for t	his h	ious	ehol	d?				_				in so								ouse	hol	d fo	rco	okin	g?						
housel RECOF			BER	OF	R	DON	IS F	OR S	LEE	PING																																										
														Piped water into dwelling	Piped water in the yard/plot	Public tap/standpipe	Neighbours tap/standpipe	Tubewell/borehole	Protected dug well	Unprotected ang weil	Unbrotected spring	Rain water	Bottled water	Bicycle/Motorcycle/Cart with small tank/drum	Tanker truck	Surface water (river, dam, lake,	pond, stream,charco, canal, irrigation channels)								Solar	Generator/private sources	Gas	Biogas		Paraffin	Coal	Charcoal		Wood/ residuals	Animal residuals	Charcoal briquette	Not Applicable					
														01	02	03	04	05	06 0	7 0	3 09	9 10	11	12	13		14						(01	02	03		05							12	2 13	3 99)				F
																																																				+

Region District Council Constituency Division/Watti Wurdflachhin Planedefflag	hat is the	e ma	ains	soure			rgy us	sed b			sehold	SEC	CTION		: HO	USIN	IG C	own								Village	e/Mtaa		На			tion A	rea		Но	ousehe	old Nu	mber			CONF	DEN.
At is the main source of energy used by this household for phting? K10 What is the main type of toliet facility used by this household? K11 How does the household dispose solid waste?		e ma	ains	soure	e of	ener	rgy us	sed b	by this	s hou:	sehold									SHIP	, co																					
At is the main source of energy used by this household for phting? K10 What is the main type of toliet facility used by this household? K11 How does the household dispose solid waste?			ain s	soure	e of	ener	rgy us	sed b	by this	s hou:	sehold									SHIP	, cu	ווטאי			100			CTIO	C A N													
I consistent of the second																			net ia	acility	used	by this					ERI	SIIC	5 AN	DAS			ow d	loes t	the ho	useh	old di	spos	e soli	id wa	iste?	
Outcome Market Shoes Market Shoes Market Shoes Market Shoes 1 Description 1 Flush pour flush to some time with washable signame 20 <th></th> <th>,</th> <th>► IF</th> <th>RESF</th> <th>PONS</th> <th>E IS C</th> <th>ODE</th> <th>3-9 €</th> <th></th> <th>FO K1</th> <th>13</th> <th></th> <th></th>																															,	► IF	RESF	PONS	E IS C	ODE	3-9 €		FO K1	13		
Outcome Market Shoes Market Shoes Market Shoes Market Shoes 1 Description 1 Flush pour flush to some time with washable signame 20 <td></td>																																										
Does your household have/own the following assets?	1 02 03 hich auth sually co aste from	00 Generator (private	04 ities ect	05	90 Wind generated	07 Does wast	08 s you te, pla	09 Ir hou astic	10 useho waste	III III IIIIIIIIIIIIIIIIIIIIIIIIIIIIII	s smith Severated from	3 sort kitch		b	01 Vhatis y you	02 s the r r hous	03 main	3 meth	P Flush/pour flush to somewhere	05 nat is	Pit latrine with washable slab and with	07 K15	08 OW	3 0 NERSI	99 HIP C	taa DF EQU	11 No facility/bush/field/				wets?		Regularly									
																										TS SH	HOUL	D BE I	N WOF	RKING	COND		I. SEI	LECT	THE	APPF	₹OPRI	ATE ,	ANSV	NER	FOR E	1CH I
Yes = 1 No = 2 For code 1, assets should be in working condition. select the appropriate answer for each it			Private Individual(s)	•	YES	= 1	NO	= 2						Mixed with other Refused						Sold/given as	Collected by ir		Kadio	I elepnone (Land Mobile Phone	Bicycle		Motorcycle/Vespa	Tricycle (Guta)	Tri motorcycle (Bajaj)					Computer /Laptop	Internet Facility	Plough						Land/Farm
signal VES = 1 NO = 2 FOR CODE 1, ASSETS SHOULD BE IN WORKING CONDITION. SELECT THE APPROPRIATE ANSWER FOR EACH IT invite to the properties of the			4											1	2				3 7					вС	D	E	F	G	H		JK		M	N	0	P					U V	w

						SECTIO	A: ID	DENTIFIC	АТ	ON								
 Reç	jion	District	Co	uncil	Constituency	Division/Wadi	Wa	ard/Shehia		Village/	Mtaa		t/Enume Area (EA)		usehol umber		CONFIDENTIAL	
																	CONTIDENTIAL	

SECTION L: INFORMATION ON AGRICULTURE, LIVESTOCK, FISHERIES AND FORESTRY L01 AGRICULTURE L02 CROPS L03 LIVESTOCK L04 NUMBER OF LIVESTOCK L05 TYPE OF GRAZING Did this household use the land for Which of the following crops did the Did this household raise or care How many cattle, goats, sheep, pig, donkey or What type of grazing is practiced in this crop production in the agricultural year household grow during 2021/22 agricultural cattle, goats, sheep or poultry for poultry were available during the Census night household? 2021/22? year? the agricultural year 2021/22? Free range = 1 Yes = 1 | No = 2 MULTIPLE RESPONSE IS ALLOWED Yes = 1 | No = 2 Zero grazing = 2 IF NO LIVESTOCK , WRITE CODE "00000" Ranch = 3 Pastoralism = 4 ▶ IF CODE 2 SKIP TO L03 IF CODE 2 SKIP TO L06 Yes = 1 | No = 2 IF CODE 1, how many acres is the land used for agriculture? THIS QUESTION SHOULD BE ASKED FOR EACH TYPE OF LIVESTOCK MENTIONED IN QUESTION L04 Cattle Cattle Goat Goat crops LAND FOR CROP PRODUCTION SHOULD BE AT LEAST 25 SQUARE Sheep Sheep Other food c Cash crops METERS Sunflower Cassava Pig

Pig

Donkey

Poultry

Donkey

Poultry

L06	FISH	ING/SEAWEED FARMING	L07	OWNERSHIP OF PLANTATION	L	L08 E	BEEKEEPING
farm for t	ning/S the ag	household engaged in fishing/fish Sericulture/crabs/seaweed farming activities gricultural year of 2021/22? LE RESPONSE ALLOWED	yea	this household operate any land for woodlot(s) during 2021/22 agrics r? := 1 No = 2			re any person in this household involved in beekeeping business/activity? ndividually = 1 Yes, in groups = 2 No= 3
Yes	= 1	No = 2	LAN	ND FOR WOODLOTS SHOULD BE AT LEAST 0.5 ACRES			
	Α	Fishing					
	в	Fish farming/Sericulture/Crabs					
	с	Seaweed farming					

Banana

D

Е F G

С

Paddy Maize

Α в

										S	ЕСТ	ION	A :	IDEN	ITIFI	CA		N											
Region		District		Co	uncil		Const	ituency	D	ivisio	n/Wac	it	Wa	rd/She	hia		Vilag	e/Mtaa	ı	Ham	let/Er	nume (EA)	Area		useh umbe		CONFIL	DENTIAL	
																													-
									INF	ORI	лат		ON	РНҮ	(SIC)	Δι		DRE	22										
A01A Does t	his hou	ısehold	have a	a physi	cal ad	ldress	?				1 N							E 2 SK			стю	N Z							
A01B Please	e, state	the Phy	sical /	Addres	s Num	nber																							
A01C Name	of the I	Road/Ha	amlet																										
							SE	СТЮ	NZ:	TO	TAL	NUI	MBE	RO	FHC	SU:	SEH		D M	EME	BER	S							
1	Male																												
F	Female																												
	Total																												
Date of Inte	rview	D	D	M	М	Y	Y	Y	Y																				

Appendix 3: Methodology for Estimating Fertility Data

Estimation and Adjustment of the 2022 PHC Fertility Data

Estimation of fertility levels for Tanzania and its regions from the 2022 census is based on reported live births by age of mother in the 12 months preceding the census and reported number of children ever born by age of mother. However, given the limitations of the 2022 census data explained in chapter one of this document, several indirect methods were used to estimate adjusted fertility indicators to evaluate the direct estimates of age-specific and total fertility rates based on births in the year preceding the census. Finally, a decision about the most plausible level of fertility in Tanzania and its regions in 2022 has been informed by review of estimated fertility levels and trends based on the 2002 and 2012 censuses; nationally representative Demographic and Health Surveys undertaken in 1991, 1996, 1999, 2004-5, 2010, 2015-16 and 2022 (TDHS-MIS); and the 2007-08 Tanzania HIV/AIDS and Malaria Indicator Survey (THMIS).

Direct Estimates of Age-specific and Total Fertility Rates

The fertility rates are based on reported births in the year preceding the census may be subject to misreporting due to the reference period or underreporting or over-reporting for other reasons. Analysis of fertility data from censuses conducted in Tanzania and in other countries has historically involved indirect estimation for assessing data quality, inferring trends, and adjusting fertility levels if appropriate. Five indirect techniques were used to derive alternative fertility estimates from the 2022 census. These techniques are Brass's P/F ratio, Brass's relational Gompertz method, a synthetic intercensal Brass P/F ratio method, Arriaga's two-census (Arriaga et al 1994: 207-211; United Nations 1983: chapter 2) and the own-children (East-West Center 1992).

The P/F ratio and relational Gompertz methods use reported births and children ever born from one census and assume that fertility is relatively stable over the 15 to 20 years preceding the inquiry. The synthetic P/F ratio and Arriaga techniques use data from two censuses to allow for changing fertility during an intercensal period. Each of these methods makes other assumptions about the data used in estimation, including accurate age reporting by women and roughly consistent reporting of births and children ever born by women in each 5-year age group (15 to 49). The own-children technique relies on children and mothers tabulated by age of children and age of mother plus an estimate of mortality level and pattern in the population. The technique estimates births during the fifteen years preceding the census from surviving children at different ages and age-specific fertility rates by matching these births to a population of women survived by enumerated women from the census.

The P/F Ratio Technique

Brass's P/F ratio method is widely used in estimating fertility when the quality of available census data is unknown or suspect. The P/F ratio technique adjusts an age-specific fertility pattern to a level of fertility derived from comparison of information on children ever born (parity, P) and cumulated age-specific fertility (F). Underlying the method is the empirical observation that respondents, when asked about their fertility, are likely to provide reports which may contain at least two types of errors: (1) in responding to the question on children ever born, older women commonly omit some births, possibly a high proportion of the dead rather than the living children, so that the average parities of women 45-49 cannot be used to measure completed fertility without some allowance for this omission; and (2) over or under-representation of births in the 12 months preceding the census on the part of all women of reproductive age, even though the information on live births in the 12 months preceding the census generally provides a fair idea of the age pattern of fertility.

The P/F ratio method provides a useful check on the quality of directly estimated age-specific and total fertility from census data provided that (1) the distribution of numbers of children ever born is the same for women who report and those who did not report, and (2) fertility has been constant. If fertility has not been constant but rather, declining, the results of the technique may be biased upward.¹ In analysing the 2022 census, the ratio of parity to cumulated fertility for women ages 25-34 was used to adjust all reported age-specific fertility rates because women in the age group 25-34 are less likely than older women to have memory lapse in reporting their ages and the number of their children. Brass's P/F Ratio technique yields an estimate of 5.2 births per woman, or 2.0 births per woman more than the reported total fertility rate, for the period preceding the 2022 census. (Appendix 3.1)

¹ In addition, underreporting of children ever born will cause a downward bias in the adjusted estimates. Children who died in infancy (especially in very early infancy), as well as those living away from home, are the births most likely to be omitted, especially by older women. Over-reporting of children ever born will cause an upward bias in the adjusted estimates. Over-reporting of children can sometimes occur when stillbirths, late foetal deaths, or adopted children are mistakenly included. In addition, if the pattern of fertility taken as the "actual" pattern contains errors, the estimated age-specific fertility rates will be incorrect. This may also affect the level of the total fertility rate (Arriaga, 2012:246).

The Relational Gompertz Technique

The relational Gompertz technique also estimates total fertility rates based on information on the number of children ever born by age of mother and a pattern of fertility (Brass, 1981). The technique uses the Gompertz function, which closely follows the pattern of cumulative fertility rates (Arriaga, 1994). Once the total fertility rate has been estimated, an age-specific fertility rate pattern can be adjusted to the estimated level as measured by that total fertility rate. The relational Gompertz technique applied to data from the 2022 census indicates a total fertility rate of 5.1 (Appendix 3.1).

Arriaga's Technique

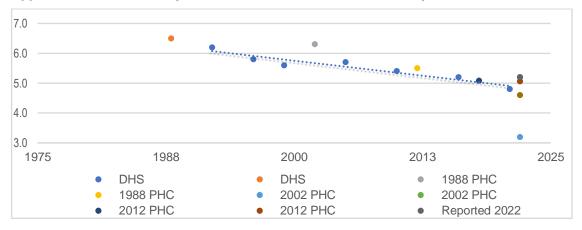
Arriaga's technique (for two dates) was also used to estimate fertility. This technique uses average numbers of children ever born in two censuses, and the change in children ever born between the two censuses for women in each age group, to obtain a set of age-specific fertility rates and a total fertility rate for the period immediately following the first census and for the period immediately preceding the second census. Since the technique does not assume that fertility is constant, it can provide an estimate of fertility when it has been changing. Arriaga's technique, which provided the TFR estimate was accepted as the best estimate for the 2012 census, indicates that total fertility in 2022 is 4.6 children per woman. This is an implied decrease of about 0.9 children per woman (Appendix 3.1).

The synthetic relational Gompertz Technique

The synthetic relational Gompertz model is an extension of the relational Gompertz method for the estimation of age-specific and total fertility and makes use of two sets of parity data, collected at different points in time, together with estimates of current fertility for the intervening period based on reports of recent births classified by age. The method explicitly allows changes in fertility to be taken into account and is designed to be applied to censuses or surveys conducted either 5 or 10 years apart. TFR as measured by synthetic relational Gompertz technique is 5.2 (Appendix 3.1).

The Own-Children Technique

This technique provides estimates of age-specific and total fertility for each of 15 years preceding the inquiry using matched children and their mothers, the ages of those children and mothers, and an index of mortality to reverse-survive children and mothers. Census data on births and children ever born are not required by this method. The own-children


technique estimate of TFR from the 2022 census is slightly lower -- between 5.1 (mean value for 2016-2020) and 5.4 (mean for 2007 to 2009) using an estimate of life expectancy at birth of 60 years and Coale-Demeny North model mortality (Appendix 3.1).

Determination of a Most Likely Estimate of Fertility for 2022

Age-specific and total fertility rates from the 2012 and 2022 censuses either directly estimated from reported births during the 12 months preceding the census or as indirectly estimated using each of the methods discussed. The range of TFR estimates for 2022 is 3.2 children per woman (reported) to 5.2 children per woman (P/F ratio and synthetic rGompertz techniques). The reported TFR level of 3.2 is likely to be too low, reflecting a history of underreporting of births in Tanzanian censuses, but some additional information may be useful in making a choice of most likely TFR level for 2022 (Appendix 3.1).

Appendix 3.1: Summary of Results of Methods Used to Determine Total Fertility Rates from the 2012 and 2022; Tanzania, 2012 and 2022 PHCs

Age	Repo	rted	Brass	P/F Ratio		tional c npertz	Arria	aga*	synthetic rGompertz	Own children
U	2012	2022	2012	2022	2012	2022	2012	2022	2012-22	2016-20
15-19	0.072	0.045	0.113	0.089	5.884	0.104	0.095	0.077	0.114	0.091
20-24	0.203	0.137	0.275	0.231	5.859	0.207	0.237	0.206	0.194	0.198
25-29	0.221	0.143	0.289	0.234	5.897	0.223	0.249	0.209	0.210	0.224
30-34	0.199	0.134	0.255	0.215	5.912	0.204	0.221	0.192	0.203	0.217
35-39	0.157	0.108	0.199	0.169	5.912	0.167	0.171	0.150	0.183	0.167
40-44	0.089	0.052	0.106	0.078	5.868	0.091	0.093	0.070	0.116	0.091
45-49	0.042	0.020	0.046	0.026	5.970	0.015	0.039	0.022	0.025	0.027
TFR	4.9	3.2	6.4	5.2	5.9	5.1	5.5	4.6	5.2	5.1
	* Es	stimates sho	own for 201	2 are based o	n the 2002 a	and 2012 PHC	s; for 2022	2 are on th	e 2012 and 20	22 PHC's

Appendix 3.2:Total Fertility Rate Estimates: Censuses and Surveys Data; 1988 - 2022

The own-children technique, derived from a cross-tabulation of mothers and children by age from the 2022 PHC, show a TFR of 3.2 children per woman for the 5-year period preceding the census. Taken together, estimates from the 2022 PHC show a possible range of total fertility of 3.2 to 5.2 children per woman for 2022, centred on a value of around 5 children per woman. Fertility indicators presented in the following section are based on this assessment of national fertility levels and trend up to 2022.

The Arriaga technique estimates from the 1988, 2002, 2012 and 2022 censuses show a slowly declining trend in total fertility culminating in a level of 4.6 children per woman in 2022. The Brass P/F ratio, relational Gompertz and synthetic rGompertz estimated high TFRs at around 5. children per woman (Appendix 3.2).

These estimates are on the higher side because of the historically high fertility reflected in the children ever born used to adjust fertility patterns in these methods. In contrast, the DHS direct estimates, based on pregnancy history data, suggest a slowly declining TFR trend but at a lower level. Specifically, averages of the two DHS estimates for periods 0-4 and 5-9 years prior to each survey are circled to draw attention to the fact that DHS surveys in Tanzania consistently exhibit more rapidly declining TFRs for each survey than does the data for the surveys taken collectively. The average TFR estimates for periods 0-4 and 5-9 years prior to each survey from the seven DHS surveys indicate a relatively slow decline in TFR over time, a trend implying a value of about 4.6 children per woman for 2022.

The own-children technique, derived from a cross-tabulation of mothers and children by age from the 2022 PHC, show a TFR of 5.1 children per woman for the 5-year period preceding the census. Taken together, estimates from the 2022 PHC suggest a possible range of total fertility of 3.2 to 5.2 children per woman for 2022, cantered on a value of around 4.2 children

per woman. The DHS survey trendline and own children estimate for the period preceding the 2022 census strongly show that a TFR estimate of about 4.6 children per woman is the most likely estimate for the 2022 PHC (Appendix 3.2).

Pi		Tanzania		Mainland	Tanzania	Tanzania	Zanzibar
P1	Age Group	2012	2022	2012	2022	2012	2022
1	15-19	0.337	0.167	0.343	0.171	0.170	0.049
2	20-24	1.421	1.119	1.437	1.135	0.942	0.649
3	25-29	2.731	2.202	2.746	2.218	2.271	1.755
4	30-34	3.946	3.275	3.952	3.288	3.746	2.918
5	35-39	4.949	4.293	4.942	4.298	5.166	4.143
6	40-44	5.600	4.772	5.583	4.770	6.113	4.808
7	45-49	5.945	4.960	5.924	4.956	6.510	5.091

Appendix 3.3: Mean Number of Children Ever Born 2012 and 2022

Appendix 3. 4: Adjusted Age Specific Fertility Rates, 2022

Degion				Age Group			
Region	15 - 19	20 -24	25 - 29	30 - 34	35 - 39	40 - 44	45 - 49
Tanzania	0.077	0.206	0.209	0.192	0.150	0.070	0.022
Rural	0.095	0.244	0.236	0.211	0.166	0.077	0.026
Urban	0.045	0.158	0.181	0.173	0.130	0.059	0.016
Mainland Tanzania	0.078	0.208	0.209	0.191	0.149	0.069	0.022
Dodoma	0.095	0.198	0.199	0.191	0.154	0.076	0.022
Arusha	0.060	0.203	0.214	0.191	0.147	0.070	0.026
Kilimanjaro	0.044	0.168	0.188	0.165	0.118	0.048	0.010
Tanga	0.072	0.218	0.220	0.199	0.156	0.076	0.024
Morogoro	0.085	0.187	0.183	0.166	0.130	0.063	0.019
Pwani	0.054	0.164	0.167	0.159	0.123	0.062	0.019
Dar es Salaam	0.026	0.117	0.147	0.146	0.109	0.052	0.015
Lindi	0.079	0.163	0.159	0.143	0.116	0.066	0.018
Mtwara	0.090	0.175	0.173	0.163	0.135	0.076	0.021
Ruvuma	0.104	0.198	0.190	0.181	0.145	0.077	0.020
Iringa	0.054	0.191	0.199	0.183	0.132	0.053	0.013
Mbeya	0.069	0.170	0.175	0.161	0.121	0.056	0.016
Singida	0.088	0.262	0.256	0.235	0.188	0.090	0.028
Tabora	0.116	0.260	0.240	0.210	0.160	0.068	0.025
Rukwa	0.117	0.264	0.259	0.237	0.202	0.101	0.040
Kigoma	0.069	0.225	0.237	0.223	0.187	0.089	0.034
Shinyanga	0.097	0.243	0.231	0.204	0.148	0.063	0.020
Kagera	0.078	0.271	0.265	0.236	0.175	0.075	0.023
Mwanza	0.069	0.207	0.209	0.191	0.151	0.065	0.022
Mara	0.095	0.260	0.250	0.216	0.164	0.069	0.023
Manyara	0.090	0.265	0.278	0.247	0.195	0.090	0.030
Njombe	0.056	0.189	0.187	0.169	0.126	0.057	0.015
Katavi	0.106	0.246	0.240	0.222	0.179	0.089	0.036
Simiyu	0.096	0.286	0.289	0.258	0.208	0.084	0.033
Geita	0.091	0.244	0.237	0.215	0.171	0.072	0.028
Songwe	0.121	0.238	0.233	0.218	0.169	0.088	0.029
Tanzania Zanzibar	0.025	0.160	0.229	0.232	0.187	0.083	0.028
Kaskazini Unguja	0.027	0.167	0.232	0.235	0.197	0.076	0.027
Kusini Unguja	0.036	0.143	0.186	0.187	0.158	0.072	0.022
Mjini Magharibi	0.019	0.135	0.209	0.217	0.167	0.079	0.019
Kaskazini Pemba	0.034	0.239	0.324	0.309	0.244	0.111	0.047
Kusini Pemba	0.031	0.215	0.308	0.293	0.240	0.094	0.047

Appendix 3.5: Mean Number of Children Ever Born by Region, 2022

Parity	1	2	3	4	5	6	7
Region	15 - 19	20 - 24	25 - 29	30 - 34	35 - 39	40 - 44	45 - 49
Tanzania	0.170	1.126	2.209	3.282	4.300	4.779	4.968
Mainland Tanzania	0.174	1.142	2.225	3.295	4.306	4.778	4.964
Dodoma	0.218	1.177	2.262	3.426	4.531	5.151	5.345
Arusha	0.128	0.952	1.948	2.883	3.737	4.191	4.407
Kilimanjaro	0.086	0.790	1.725	2.646	3.483	3.938	4.162
Tanga	0.148	1.101	2.254	3.310	4.370	4.896	5.097
Morogoro	0.203	1.142	2.131	3.109	4.037	4.542	4.781
Pwani	0.126	0.941	1.906	2.859	3.714	4.238	4.470
Dar es Salaam	0.055	0.560	1.311	2.147	2.868	3.258	3.395
Lindi	0.188	1.053	1.899	2.743	3.596	4.165	4.456
Mtwara	0.193	1.073	1.919	2.775	3.573	4.045	4.196
Ruvuma	0.242	1.223	2.194	3.182	4.141	4.665	4.866
Iringa	0.105	0.919	1.909	2.935	3.914	4.484	4.778
Mbeya	0.177	1.044	2.016	3.015	3.991	4.501	4.725
Singida	0.192	1.373	2.620	3.833	5.033	5.569	5.667
Tabora	0.271	1.548	2.864	4.042	5.116	5.430	5.485
Rukwa	0.255	1.532	2.902	4.166	5.482	6.027	6.146
Kigoma	0.149	1.169	2.446	3.633	4.931	5.507	5.716
Shinyanga	0.211	1.387	2.611	3.772	4.814	5.184	5.232
Kagera	0.146	1.297	2.607	3.842	4.995	5.485	5.656
Mwanza	0.152	1.153	2.349	3.550	4.645	5.052	5.188
Mara	0.203	1.452	2.808	4.108	5.233	5.603	5.584
Manyara	0.196	1.267	2.529	3.732	4.826	5.426	5.602
Njombe	0.103	0.927	1.852	2.804	3.680	4.239	4.539
Katavi	0.275	1.530	2.859	4.087	5.285	5.676	5.746
Simiyu	0.201	1.508	3.012	4.333	5.616	5.906	5.922
Geita	0.209	1.436	2.798	4.089	5.341	5.736	5.819
Songwe	0.253	1.320	2.384	3.500	4.607	5.242	5.474
Tanzania Zanzibar	0.049	0.649	1.755	2.918	4.143	4.808	5.091
Kaskazini Unguja	0.053	0.699	1.788	2.940	4.212	4.944	5.124
Kusini Unguja	0.078	0.702	1.715	2.748	3.753	4.336	4.785
Mjini Magharibi	0.037	0.511	1.516	2.618	3.671	4.335	4.602
Kaskazini Pemba	0.058	0.958	2.445	3.872	5.341	6.124	6.214
Kusini Pemba	0.058	0.868	2.266	3.534	5.071	5.714	5.897

Appendix 3. 6: Selected Indicators of Fertility and Nuptiality in Tanzania, 2022

Desien	CBR (000)	TFR	CWR	Gross Reproduction	Net Reproduction		% Never marrie	ł		% Married	
Region		IFK	CWR	Rate	Rate	Both Sexes	Male	Female	Both Sexes	Male	Female
Tanzania	35	4.6	632.6	2.3	2.1	32.9	39.4	27.1	51.4	50.3	52.4
Rural	36	5.3		2.6		28.9	36.7	21.6	54.7	52.6	56.7
Urban	34	3.8		1.9		39.5	43.9	35.6	46.1	46.5	45.8
Mainland Tanzania	34.9	4.6	634.9	2.3	2.1	32.8	39.3	27.0	51.3	50.2	52.3
Dodoma	33.2	4.7	637.2	2.5	2.1	31.8	38.8	25.3	51.2	50.3	52.0
Arusha	37.4	4.6	580.9	2.1	2.2	34.9	41.6	29.2	54.0	51.2	56.4
Kilimanjaro	26.6	3.7	504.2	2.1	2.1	36.7	42.2	31.7	47.2	47.0	47.4
Tanga	33.7	4.8	612.0	2.8	2.0	30.4	38.8	22.8	52.8	50.5	54.9
Morogoro	32.2	4.2	578.4	1.7	2.1	32.9	38.7	27.4	46.8	46.0	47.5
Pwani	30.4	3.7	511.1	1.7	2.0	34.0	39.6	28.8	51.1	50.6	51.6
Dar es Salaam	30.7	3.1	368.8	1.4	2.0	43.8	46.9	41.0	43.3	43.8	42.9
Lindi	28.3	3.7	502.9	1.8	2.1	30.8	37.1	25.0	48.1	47.5	48.7
Mtwara	31.9	4.2	482.3	2.0	2.1	29.6	35.0	24.9	49.7	49.9	49.5
Ruvuma	34.7	4.6	576.6	2.1	2.1	31.1	35.7	26.9	52.9	52.5	53.3
Iringa	32.2	4.1	533.7	1.9	2.2	35.6	42.1	29.8	48.3	48.1	48.6
Mbeya	31.3	3.8	571.6	1.9	2.1	32.5	38.5	27.3	51.3	51.6	51.0
Singida	36.4	5.7	797.0	3.1	2.2	30.8	39.0	23.0	55.2	52.6	57.8
Tabora	38.5	5.4	818.4	2.5	2.1	28.4	35.9	21.5	57.7	55.4	59.8
Rukwa	42.7	6.1	799.2	2.9	2.1	27.0	33.5	21.2	46.7	46.4	46.9
Kigoma	35.6	5.3	799.4	2.7	2.1	30.2	37.5	23.9	54.2	53.8	54.6
Shinyanga	37.9	5.0	724.3	2.3	2.1	30.3	37.4	23.7	52.8	51.5	54.1
Kagera	39.4	5.6	712.4	2.9	2.1	28.3	35.6	21.6	49.3	48.5	50.1
Mwanza	34.0	4.6	670.8	2.5	2.1	36.2	42.6	30.3	48.8	48.2	49.3
Mara	36.9	5.4	738.7	3.0	2.1	31.8	40.1	24.6	56.0	54.0	57.7
Manyara	39.5	6.0	763.9	2.7	2.2	32.2	40.4	23.8	57.6	52.7	62.6
Njombe	31.9	4.0	499.3	1.7	2.2	33.4	38.8	28.9	47.7	48.9	46.8
Katavi	39.2	5.6	858.9	2.8	2.2	27.1	34.2	20.2	56.3	54.0	58.6
Simiyu	40.6	6.3	881.7	3.4	2.2	29.6	38.6	21.7	59.1	56.1	61.8
Geita	37.3	5.3	815.2	2.9	2.1	30.5	38.1	23.4	54.4	52.7	56.1
Songwe	41.8	5.5	674.9	2.4	2.1	25.6	32.6	19.5	62.0	61.0	62.8
Tanzania Zanzibar	36.0	4.7	563.8	2.8	2.1	36.2	43.3	29.9	54.1	52.4	55.6
Kaskazini Unguja	37.3	4.8	571.4	2.8	2.1	34.3	41.6	27.4	56.5	54.3	58.5
Kusini Unguja	32.6	4.0	528.8	2.4	2.1	33.2	40.2	26.2	55.3	53.7	56.9
Mjini Magharibi	35.9	4.2	495.9	2.4	2.0	38.1	44.3	32.6	51.9	51.0	52.8
Kaskazini Pemba	40.3	6.5	721.9	4.0	2.1	34.3	43.2	26.6	57.4	54.2	60.1
Kusini Pemba	39.0	6.1	703.6	3.6	2.1	35.5	44.2	28.0	55.5	52.4	58.1

Deview	1967		1978		1988		2002		2012		2022	
Region	Recorded	Adjusted										
Tanzania	NA	47	46	49	38	47	35	43	36	42	24	35
Mainland	NA	47	46	49	38	47	35	43	37	42	24	35
Dodoma	61	48	44	52	40	48	35	44	37	42	24	33
Arusha	56	47	48	48	40	46	33	43	31	35	23	37
Kilimanjaro	57	51	46	48	38	47	28	36	24	30	21	27
Tanga	58	46	42	47	35	46	33	40	34	41	26	34
Morogoro	50	44	48	45	34	45	31	41	32	38	21	32
Pwani	48	37	40	35	34	33	30	38	32	36	19	30
Dar es Salaam	NA	33	42	48	34	38	24	35	30	37	19	31
Lindi	NA		41	43	34	42	28	37	30	35	18	28
Mtwara	49	35	38	47	34	44	28	36	31	32	21	32
Ruvuma	62	46	44	47	35	46	30	41	35	37	21	35
Iringa	58	55	45	53	35	49	30	40	31	35	20	32
Mbeya	62	52	46	55	36	51	32	42	33	41	22	31
Singida	55	45	40	47	41		35	43	40	48	26	36
Tabora	55	40	43	45	38	45	35	48	43	50	24	39
Rukwa			56	62	42	52	39	52	50	52	27	43
Kigoma	54	43	54	52	42	47	43	56	42	48	24	36
Shinyanga	65	51	48	49	47	51	41	49	39	44	23	38
Kagera	53	50	48	49	46	49	42	48	41	44	27	39
Mwanza	62	49	48	51	43	50	40	46	41	48	25	34
Mara	62	52	68	53	42	53	42	47	43	49	28	37
Manyara	NA	NA	NA	NA	NA	NA	38	46	36	42	25	40
Njombe	NA	16	33	18	32							
Katavi	NA	51	26	39								
Simiyu	NA	50	52	29	41							
Geita	NA	57	28	37								
Songwe	NA	26	42									
Tanzania Zanzibar	58	48	48	48	45	49	32	43	35	39	29	36
Kaskazini Unguja	NA	NA	47	46	47	44	31	43	33	39	30	37
Kusini Unguja	NA	NA	39	41	42	46	28	38	38	38	26	33
Mjini Magharibi	NA	NA	47	47	40	51	30	42	31	36	27	36
Kaskazini Pemba	NA	NA	54	53	47	52	36	46	38	46	33	40
Kusini Pemba	NA	NA	53	48	51	51	35	45	42	48	31	39

Appendix 3.7: Recorded and Adjusted Crude Birth Rate by Region, 1967-2022 Censuses

Region	Child Woman Ratio	(Children aged 0-4 to wo 1,000 Women	omen aged 15-49) per
-	Total	Rural	Urban
Tanzania	633	710	467
Mainland Tanzania	635	715	467
Dodoma	637	744	485
Arusha	581	731	408
Kilimanjaro	504	535	426
Tanga	612	677	463
Morogoro	578	668	465
Pwani	511	560	453
Dar-es-salaam	369	NA	369
Lindi	503	527	421
Mtwara	482	506	417
Ruvuma	577	603	500
Iringa	534	584	443
Mbeya	572	647	477
Singida	797	1,597	879
Tabora	818	371	375
Rukwa	799	1,295	1,195
Kigoma	799	667	716
Shinyanga	724	1,344	253
Kagera	712	645	2,259
Mwanza	671	587	276
Mara	739	787	222
Manyara	764	236	471
Njombe	499	1,157	568
Katavi	859	1,796	977
Simiyu	882	1,015	1,816
Geita	815	406	226
Songwe	675	143	54
Tanzania Zanzibar	564	510	468
Kaskazini Unguja	571	402	455
Kusini Unguja	529	748	8,445
Mjini Magharibi	496	716	43
Kaskazini Pemba	722	680	832
Kusini Pemba	704	-	-

Appendix 3.8: Child Woman Ratio (per 1,000 Women) by Region, 2022 PHC

Appendix 3.9: Mean Age at First Marriage and Age First Birth by Region and District, 2022 PHC

Region			je at First Marriage			Age First Birth
District	Total	Males	Females	Age Difference	Age	FB - Mar diff
Tanzania Total	24.1	26.4	22.1	4.3	23.8	1.7
Tanzania Rural	22.8	25.2	20.6	4.6	22.5	1.9
Tanzania Urban	25.9	27.9	24.2	3.7	25.1	0.9
Mainland Tanzania Total	24.1	26.3	22.1	4.2	23.7	1.6
Mainland Tanzania Rural	22.8	25.2	20.6	4.6	22.4	1.8
Mainland Tanzania Urban	25.9	27.9	24.2	3.7	25.1	0.9
Zanzibar Total	25.6	27.8	23.7	4.1	25.8	2.1
Zanzibar Rural	24.9	27.3	22.7	4.6	25.7	3.0
Zanzibar Urban	26.3	28.3	24.6	3.7	26.1	1.5
Dodoma	24.2	26.4	22.1	4.3	22.6	0.5
Kondoa District Council	24.7	28.5	21.0	7.5	24.4	3.4
Kondoa Town Council	25.5	28.5	22.6	5.9	26.2	3.6
Mpwapwa District Council	22.4	24.2	20.6	3.6	21.2	0.6
Kongwa District Council	23.1	25.0	21.2	3.8	21.3	0.1
Chamwino District Council	22.5	24.6	20.5	4.1	21.2	0.7
Dodoma Municipal Council	26.4	28.1	24.8	3.3	24.9	0.1
Bahi District Council	22.3	24.5	20.2	4.3	21.6	1.4
Chemba District Council	23.5	26.7	20.2	6.5	23.1	2.9
Arusha	25.3	28.0	23.0	5.0	25.0	2.0
Monduli District Council	22.8	26.5	20.5	6.0	22.6	2.1
Meru District Council	26.3	28.9	24.1	4.8	25.7	1.6
Arusha District Council	25.3	27.8	23.3	4.5	25.6	2.3
Longido District Council	22.4	26.7	19.6	7.1	21.8	2.2
Karatu District Council	26.6	28.9	24.1	4.8	25.1	1.0
Ngorongoro District Council	21.7	26.1	18.8	7.3	21.1	2.3
Arusha City Council	26.7	28.7	25.0	3.7	25.8	0.8
Kilimanjaro	26.6	29.0	24.5	4.5	25.5	1.0
Rombo District Council	27.5	30.0	25.2	4.8	25.6	0.4
Mwanga District Council	26.3	28.9	23.9	5.0	25.3	1.4
Same District Council	25.2	27.6	23.0	4.6	25.1	2.1
Moshi District Council	27.7	29.5	25.8	3.7	25.9	0.1
Moshi Municipal Council	27.0	29.2	24.8	4.4	25.5	0.7
Hai District Council	26.5	28.8	24.4	4.4	25.4	1.0
Siha District Council	25.4	28.0	23.1	4.9	25.7	2.6
Tanga	24.3	27.1	22.0	5.1	24.6	2.6
Lushoto District Council	23.4	26.5	21.3	5.2	25.7	4.4
Bumbuli District Council	24.2	27.7	21.5	6.2	25.9	4.4
Korogwe District Council	24.2	27.2	21.6	5.6	25.0	3.4
Korogwe Town Council	25.7	27.6	24.2	3.4	25.8	1.6
Muheza District Council	25.1	27.6	23.0	4.6	25.1	2.1
Tanga City Council	26.4	28.5	24.4	4.1	25.4	1.0
Pangani District Council	24.3	26.6	22.2	4.4	24.9	2.7
Handeni District Council	23.5	26.5	20.9	5.6	23.6	2.7
Handeni Town Council	24.6	27.3	22.3	5.0	25.2	2.9
Kilindi District Council	22.3	25.4	19.6	5.8	21.0	1.4
Mkinga District Council	24.6	27.1	22.3	4.8	23.9	1.6
Morogoro	24.1	26.5	22.0	4.5	23.4	1.4
Kilosa District Council	23.9	26.2	21.7	4.5	22.3	0.6
Morogoro District Council	23.5	26.2	21.0	5.2	23.9	2.9
Morogoro Municipal Council	26.7	28.6	24.9	3.7	25.2	0.3
Mimba District Council	23.6	26.1	21.4	4.7	23.0	1.6
Ifakara Town Council	25.1	27.3	23.2	4.1	25.2	2.0
Ulanga District Council	23.1	25.1	20.1	5.0	22.4	2.0
Malinyi District Council	22.0	23.1	19.6	5.3	22.4	2.3
Mvomero District Council	22.2	24.9	21.2	5.0	23.2	2.2

Note: FB - Mar diff: It is the difference between age at first birth and age at first Mariage

Appendix 3.10: Average Age at First Marriage and First Birth, Tanzania: 2022 -- continued

Region		-	Age at First Marriage			ge First Birth
District	Total	Males	Females	Age Difference	Age	FB - Mar diff
Pwani	24.9	27.1	22.9	4.2	24.7	1.8
Bagamoyo District Council	25.3	27.3	23.5	3.8	25.3	1.8
Chalinze District Council	24.2	26.7	22.1	4.6	24.1	2.0
Kibaha District Council	25.6	27.6	23.7	3.9	24.6	0.9
Kibaha Town Council	26.2	28.1	24.5	3.6	25.2	0.7
Kisarawe District Council	25.0	27.2	22.9	4.3	25.3	2.4
Mkuranga District Council	24.5	26.9	22.7	4.2	24.7	2.0
Rufiji District Council	24.3	26.7	21.7	5.0	23.3	1.6
Mafia District Council	24.4	26.9	22.0	4.9	25.7	3.7
Kibiti District Council	24.5	27.0	22.0	5.0	23.6	1.6
Dar-es-salaam	27.3	29.2	25.7	3.5	25.8	0.1
Kinondoni Municipal Council	28.0	29.6	26.6	3.0	26.3	-0.3
Dar es Salaam City	27.0	29.0	25.2	3.8	25.7	0.5
Temeke Municipal Council	26.9	28.9	25.1	3.8	25.6	0.5
Kigamboni Municipal Council	26.7	28.6	25.0	3.6	25.6	0.5
Ubungo Municipal Council	28.0	29.8	26.5	3.3	26.1	
Lindi	28.0	29.8 25.8	20.5 21.5	3.3 4.3	20.1 24.1	-0.4 2.6
Kilwa District Council						
	23.4	26.1	20.9	5.2	24.0	3.1
Mtama District Council	23.4	25.5	21.5	4.0	24.3	2.8
Lindi Municipal Council	24.8	26.9	22.8	4.1	24.6	1.8
Nachingwea District Council	23.3	25.3	21.4	3.9	23.8	2.4
Liwale District Council	23.7	25.9	21.7	4.2	24.0	2.3
Ruangwa District Council	23.5	25.5	21.5	4.0	24.0	2.5
Mtwara	23.0	25.3	21.0	4.3	23.9	2.9
Mtwara District Council	23.3	25.9	20.9	5.0	24.1	3.2
Nanyamba Town Council	22.3	24.9	20.0	4.9	24.5	4.5
Mtwara Mikindani Municipal Council	26.0	28.0	24.2	3.8	25.5	1.3
Newala District Council	22.3	24.5	20.3	4.2	24.2	3.9
Newala Town Council	23.5	25.9	21.4	4.5	24.6	3.2
Masasi District Council	22.4	24.4	20.5	3.9	22.7	2.2
Masasi Town Council	23.9	25.8	22.2	3.6	24.2	2.0
Tandahimba District Council	22.3	25.0	20.0	5.0	24.1	4.1
Nanyumbu District Council	22.0	23.9	20.2	3.7	22.1	1.9
Ruvuma	23.2	25.0	21.5	3.5	22.5	1.0
Tunduru District Council	23.0	25.1	21.0	4.1	22.2	1.2
Songea District Council	22.9	24.9	20.7	4.2	21.5	0.8
Songea Municipal Council	25.1	26.8	23.6	3.2	24.7	1.1
Madaba District Council	25.0	27.0	23.0	4.0	24.4	1.4
Mbinga District Council	22.1	23.7	20.6	3.1	22.3	1.7
Mbinga Town Council	23.1	24.5	21.8	2.7	23.1	1.3
Nyasa District Council	22.1	23.9	20.3	3.6	22.1	1.8
Namtumbo District Council	23.0	25.0	21.3	3.7	21.3	0.0
Iringa	26.0	27.8	24.4	3.4	25.2	0.8
Iringa District Council	25.4	27.6	23.4	4.2	24.9	1.5
Iringa Municipal Council	25.4	29.0	25.4	2.9	24.9	-0.2
Mafinga Town Council	27.5	29.0	24.7	2.9	23.9	-0.2
Mufindi District Council						
	25.5	27.3	23.8	3.5	25.2	1.4
Kilolo District Council	25.5	27.5	23.6	3.9	24.9	1.3
Mbeya	24.4	26.2	22.8	3.4	24.0	1.2
Chunya District Council	22.5	24.7	20.3	4.4	21.6	1.3
Mbeya District Council	23.4	25.1	22.0	3.1	24.3	2.3
Mbeya City Council	26.4	28.0	25.0	3.0	25.5	0.5
Kyela District Council	24.8	26.7	23.2	3.5	24.1	0.9
Rungwe District Council	24.7	26.4	23.2	3.2	24.6	1.4
Busekelo District Council	25.3	27.2	23.6	3.6	23.5	-0.1
Mbarali District Council	23.2	25.4	21.3	4.1	22.3	1.0

Appendix 3.11: Average Age at First Marriage and First Birth, Tanzania: 2022 -- continued

Region		Averag	je Age at First Marria	age	Ave	e Age First Birth
District	Total	Males	Females	Age Difference	Age	FB - Mar diff
Singida	23.6	26.2	21.1	5.1	23.4	2.3
Iramba District Council	23.2	25.7	20.6	5.1	22.7	2.1
Singida District Council	24.4	27.3	21.5	5.8	26.2	4.7
Singida Municipal Council	26.0	28.4	23.8	4.6	25.6	1.8
Manyoni District Council	22.4	24.6	20.3	4.3	21.3	1.0
Itigi District Council	22.0	24.5	19.5	5.0	21.5	2.0
Ikungi District Council	23.1	26.0	20.4	5.6	22.8	2.4
Mkalama District Council	23.8	26.3	21.2	5.1	24.3	3.1
Tabora	21.9	24.2	19.8	4.4	21.3	1.5
Nzega Town Council	24.0	26.2	22.0	4.2	23.7	1.7
Nzega District Council	21.2	23.5	19.1	4.4	21.4	2.3
Igunga District Council	21.4	23.7	19.3	4.4	21.5	2.2
Uyui District Council	21.2	23.6	19.0	4.6	21.5	2.5
Urambo District Council	22.6	25.0	20.5	4.5	22.0	1.5
Sikonge District Council	21.2	23.8	18.9	4.9	22.0	3.1
Tabora Municipal Council	25.3	27.4	23.4	4.0	24.2	0.8
Kaliua District Council	21.2	23.5	19.2	4.3	21.1	1.9
Rukwa	22.0	23.8	20.3	3.5	21.8	1.5
Kalambo District Council	21.0	22.9	19.4	3.5	21.7	2.3
Sumbawanga District Council	20.9	22.9	19.2	3.7	20.9	1.7
Sumbawanga Municipal Council	24.2	25.9	22.7	3.2	24.5	1.8
Nkasi District Council	22.0	23.8	20.5	3.3	21.5	1.0
Kigoma	23.0	25.1	21.2	3.9	23.6	2.4
Kibondo District Council	22.1	24.0	20.4	3.6	23.8	3.4
Kasulu District Council	22.0	24.0	20.2	3.8	21.4	1.2
Kasulu Town Council	23.4	25.2	22.0	3.2	24.4	2.4
Kigoma District Council	24.3	26.8	22.4	4.4	24.9	2.5
Kigoma-Ujiji Municipal Council	26.2	28.3	24.5	3.8	25.3	0.8
Uvinza District Council	22.4	24.8	20.4	4.4	21.9	1.5
Buhigwe District Council	23.2	25.4	21.5	3.9	25.3	3.8
Kakonko District Council	22.3	24.5	20.4	4.1	24.1	3.7
Shinyanga	22.7	24.9	20.7	4.2	21.9	1.2
Ushetu District Council	21.4	23.7	19.3	4.4	20.9	1.6
Kahama Municipal Council	23.6	25.8	21.7	4.1	23.6	1.9
Msalala District Council	21.9	24.2	19.8	4.4	21.2	1.4
Kishapu District Council	22.5	24.9	20.3	4.6	22.5	2.2
Shinyanga District Council	22.0	24.1	19.8	4.3	21.3	1.5
Shinyanga Municipal Council	25.5	27.6	23.7	3.9	24.6	0.9
Kagera	22.8	25.0	20.8	4.2	24.3	3.5
Karagwe District Council	22.6	24.9	20.5	4.4	24.0	3.5
Bukoba District Council	22.0	24.5	20.3	4.4	24.0	4.0
Bukoba Municipal Council	23.3	26.9	23.0	3.9	25.7	2.7
Muleba District Council	23.2	25.4	21.2	4.2	25.0	3.8
Biharamulo District Council	23.2	23.4	20.0	4.1	21.8	1.8
Ngara District Council	21.9	24.1	20.0	3.5	21.0	3.5
Kyerwa District Council	22.1	24.0	20.5	4.1	24.0	3.5
•	21.9	24.1	20.0	4.1	23.5	3.3
Missenyi District Council Mwanza	23.7 24.4	26.2 26.6	21.3 22.5	4.9	24.6 23.7	3.3 1.2
Ukerewe District Council	24.4	26.0 26.7	22.5	4.1	23.9	
	24.6	26.7	22.6	4.1	23.9	1.3
Magu District Council						
Mwanza City Council	25.6	27.8	23.7	4.1	25.2	1.5
Kwimba District Council	22.7	24.9	20.4	4.5	21.4	1.0
Sengerema District Council	23.8	26.0	21.7	4.3	22.3	0.6
Buchosa District Council	23.7	25.9	21.6	4.3	22.6	1.0
Ilemela Municipal Council	26.1	28.1	24.4	3.7	25.2	0.8
Misungwi District Council	23.4	25.6	21.3	4.3	22.0	0.7

Appendix 3.12: Average Age at First Marriage and First Birth, Tanzania: 2022 -- continued

Region		Average A	Age at First Marriage		A	ve Age First Birth
District	Total	Males	Females	Age Difference	Age	FB - Mar diff
Mara	23.2	25.6	21.2	4.4	22.0	0.8
Tarime District Council	21.8	24.1	19.8	4.3	21.5	1.7
Tarime Town Council	23.4	25.5	21.8	3.7	23.5	1.7
Serengeti District Council	22.2	24.8	20.1	4.7	21.4	1.3
Musoma District Council	24.1	26.3	21.9	4.4	21.9	0.0
Musoma Municipal Council	26.1	28.3	24.4	3.9	25.1	0.7
Bunda District Council	23.9	26.4	21.6	4.8	22.1	0.5
Bunda Town Council	24.3	26.4	22.5	3.9	23.1	0.6
Butiama District Council	23.1	25.6	21.0	4.6	21.8	0.8
Rorya District Council	22.9	25.6	20.7	4.9	21.2	0.5
Manyara	24.2	26.9	21.6	5.3	23.1	1.5
Babati District Council	25.5	28.0	22.9	5.1	25.0	2.1
Babati Town Council	26.4	28.5	24.5	4.0	25.4	0.9
Hanang District Council	24.4	26.7	21.9	4.8	24.3	2.4
Mbulu District Council	25.0	27.0	22.7	4.3	24.1	1.4
Mbulu Town Council	26.5	28.3	24.4	3.9	25.9	1.5
Simanjiro District Council	22.3	26.1	19.2	6.9	21.4	2.2
Kiteto District Council	21.7	24.9	19.1	5.8	22.0	2.9
Njombe Niombo District Council	25.2	26.9	23.8	3.1	25.4	1.6
Njombe District Council	25.0	26.7 27.3	23.6 24.5	3.1 2.8	24.9 25.6	<u> </u>
Njombe Town Council Makambako Town Council	25.8 25.6	27.3	24.5	2.8	25.6	1.1
Ludewa District Council	25.6	27.1	24.4	3.7	25.8	1.4
Makete District Council	24.5	26.5	22.8	3.7	24.7	2.5
Wanging'ombe District Council	24.0	26.9	23.4	3.5	25.3	1.9
Katavi	25.0	20.9 24.3	19.7	4.6	25.5 21.3	1.9
Mpanda Municipal Council	23.4	25.7	21.5	4.0	23.5	2.0
Nsimbo District Council	23.4	24.5	19.6	4.2	23.5	1.5
Tanganyika District Council	22.0	24.3	19.0	4.5	21.1	2.3
Mele District Council	21.2	23.8	19.0	4.7	21.5	2.3
Mpimbwe District Council	21.4	23.5	18.9	4.6	21.0	3.1
Simiyu	22.5	24.9	20.3	4.6	21.5	1.2
Bariadi District Council	21.6	24.2	19.5	4.7	21.0	1.5
Bariadi Town Council	25.0	27.3	22.3	5.0	21.8	-0.5
Itilima District Council	21.4	23.9	19.5	4.4	21.8	2.3
Meatu District Council	21.5	23.7	19.7	4.0	21.3	1.6
Maswa District Council	22.3	24.4	20.3	4.1	21.6	1.3
Busega District Council	23.5	25.8	21.5	4.3	22.9	1.4
Geita	22.7	25.0	20.7	4.3	22.0	1.3
Geita District Council	22.6	24.9	20.5	4.4	21.8	1.3
Geita Town Council	24.1	26.2	22.3	3.9	24.3	2.0
Nyang'hwale District Council	22.4	24.6	20.1	4.5	21.1	1.0
Mbogwe District Council	22.0	24.2	19.8	4.4	21.3	1.5
Bukombe District Council	22.4	24.6	20.5	4.1	21.7	1.2
Chato District Council	22.7	24.9	20.7	4.2	22.1	1.4
Songwe	22.2	24.2	20.5	3.7	22.0	1.5
Momba District	20.2	22.4	18.4	4.0	21.8	3.4
Tunduma Town	23.4	25.2	22.0	3.2	24.6	2.6
Sonawe District	21.5	23.9	19.3	4.6	22.3	3.0
Mbozi District	22.7	24.6	21.0	3.6	23.6	2.6
Ileie District	22.7	24.4	21.2	3.2	23.5	2.3
Kaskazini Unguja	25.5	27.8	23.3	4.5	25.6	2.3
Kaskazini A District	25.7	28.0	23.5	4.5	25.5	2.0
Kaskazini B District	25.1	27.4	23.0	4.4	25.8	2.8
Kusini Unguja	25.3	27.3	23.4	3.9	25.5	2.1
Kati Town Council	25.0	27.0	23.0	4.0	25.3	2.3
Kusini District Council	26.0	27.7	24.2	3.5	25.8	1.6
Mjini Magharibi	26.1	28.1	24.5	3.6	26.0	1.5
Mjini Municipal Council	27.0	28.9	25.3	3.6	25.8	0.5
Magharibi A Municipal Council	25.4	27.5	23.7	3.8	25.8	2.1
Magharibi B Municipal Council	26.2	28.1	24.6	3.5	26.3	1.7
Kaskazini Pemba	24.5	27.4	22.2	5.2	25.6	3.4
Wete Town Council	24.8	27.7	22.5	5.2	25.4	2.9
Micheweni District Council	24.2	27.0	21.9	5.1	25.9	4.0
Kusini Pemba	24.9	27.5	22.7	4.8	25.9	3.2
Chake Chake Town Council	25.0	27.5	22.9	4.6	25.6	2.7
Mkoani Town Council	24.8	27.5	22.5	5.0	26.2	3.7

			-	-									
Male s			Proporti on Single	Probabili ty of Marriage	Probabili ty of Dying at	Net Probabili ty of							
X	Populati	Single	Sx	nx	qx	nx`	dx,	lx`	dx`	Nx`	Lx`	Τx`	ex`
15	628,831	627,10	0.99725	0.00826	0.01543	0.00819	0.0153	91,65	1,40	751	90,57	959,36	10.
16	625,841	618,96	0.98902	0.00468	0.01634	0.00464	0.0163	89,49	1,45	415	88,55	868,78	9.8
17	640,327	630,33	0.98439	0.01719	0.01726	0.01704	0.0171	87,62	1,49	1,49	86,12	780,23	9.1
18	629,042	608,58	0.96747	0.02516	0.01817	0.02493	0.0179	84,62	1,51	2,11	82,81	694,10	8.4
19	507,304	478,45	0.94313	0.07261	0.01908	0.07192	0.0183	81,00	1,48	5,82	77,34	611,29	7.9
20	591,772	517,59	0.87465	0.05317	0.01999	0.05264	0.0194	73,68	1,43	3,87	71,02	533,95	7.5
21	412,822	341,87	0.82814	0.10495	0.02016	0.10389	0.0191	68,37	1,30	7,10	64,16	462,92	7.2
22	624,878	463,17	0.74123	0.12072	0.02033	0.11949	0.0191	59,96	1,14	7,16	55,80	398,75	7.1
23	455,112	296,62	0.65175	0.11674	0.02051	0.11554	0.0193	51,65	997	5,96	48,17	342,94	7.1
24	423,122	243,57	0.57567	0.14268	0.02068	0.14121	0.0192	44,68	858	6,31	41,10	294,77	7.2
25	505,228	249,34	0.49353	0.11610	0.02085	0.11489	0.0196	37,51	737	4,31	34,99	253,67	7.2
26	414,294	180,72	0.43623	0.13362	0.02117	0.13220	0.0197	32,47	641	4,29	30,00	218,67	7.3
27	440,538	166,49	0.37794	0.12315	0.02148	0.12183	0.0201	27,53	555	3,35	25,58	188,67	7.4
28	452,382	149,91	0.33140	0.13419	0.02180	0.13273	0.0203	23,62	481	3,13	21,81	163,09	7.5
29	361,687	103,77	0.28693	0.17596	0.02212	0.17401	0.0201	20,01	404	3,48	18,06	141,27	7.8
30	529,824	125,27	0.23644	0.10857	0.02243	0.10735	0.0212	16,12	342	1,73	15,08	123,20	8.2
31	279,964	59,008	0.21077	0.12129	0.02296	0.11989	0.0215	14,05	303	1,68	13,05	108,11	8.3
32	463,785	85,896	0.18521	0.09918	0.02348	0.09802	0.0223	12,06	269	1,18	11,33	95,058	8.4
33	279,668	46,659	0.16684	0.13319	0.02400	0.13159	0.0224	10,61	238	1,39	9,795	83,720	8.5
34	310,229	44,864	0.14462	0.02366	0.02452	0.02337	0.0242	8,978	218	210	8,765	73,925	8.4
35	370,385	52,296	0.14119	0.13459	0.02504	0.13290	0.0233	8,551	200	1,13	7,883	65,160	8.3
36	310,220	37,906	0.12219	0.06968	0.02617	0.06877	0.0252	7,215	182	496	6,875	57,278	8.3
37	273,135	31,049	0.11368	0.07516	0.02729	0.07413	0.0262	6,536	172	485	6,208	50,402	8.1
38	329,736	34,666	0.10513	0.05975	0.02842	0.05890	0.0275	5,880	162	346	5,626	44,194	7.9
39	215,901	21,342	0.09885	0.02903	0.02954	0.02860	0.0291	5,372	156	154	5,217	38,568	7.4
40	379,844	36,458	0.09598	0.10182	0.03067	0.10026	0.0291	5,062	147	507	4,734	33,351	7.0
41	169,856	14,643	0.08621	0.04213	0.03217	0.04145	0.0315	4,407	139	183	4,246	28,617	6.7
42	328,023	27,087	0.08258	0.07964	0.03368	0.07830	0.0323	4,085	132	320	3,859	24,371	6.3
43	219,329	16,669	0.07600	0.03190	0.03519	0.03133	0.0346	3,633	126	114	3,514	20,512	5.8
44	190,633	14,026	0.07358	-0.03236	0.03670	-0.03176	0.0372	3,394	127	-108	3,384	16,998	5.0
45	299,948	22,783	0.07596	0.11669	0.03821	0.11447	0.0359	3,375	121	386	3,121	13,614	4.4
46	193,523	12,984	0.06709	0.01881	0.04137	0.01843	0.0409	2,867	117	53	2,782	10,493	3.8
47	200,758	13,216	0.06583	0.03343	0.04453	0.03268	0.0437	2,697	118	88	2,594	7,711	3.0
48	241,003	15,335	0.06363	0.02092	0.04769	0.02042	0.0471	2,491	118	51	2,406	5,117	2.1
49	163,534	10,188	0.06230	0.29707	0.05085	0.28951	0.0433	2,322	101	672	1,936	2,711	1.4
50+	3,051,60	133,63	0.04379	1.00000	0.38647	0.80677	0.1932	1,549	299	1,25	775	775	1.0

Appendix 3.13: Net Nuptiality Table for Males; Tanzania, 2022 PHC

Person Propatility of by of single Probability of by of single Probability of by of single Probability of single														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	es			on Single	ty of Marriage	ty of Dying at Age x	ty of Marriage							
16 635,242 584,7 0.92046 0.07857 0.00720 0.07829 0.006 88,82 61 6,954 85,03 655,5 7.7 17 628,187 532,7 0.84814 0.18251 0.00766 0.18181 0.000 81,55 56 14,77 73,58 570,5 7.8 18 667,145 462,5 0.6933,5 0.13727 0.00816 0.02692 0.007 56,40 42 12,80 49,79 435,7 8.8 20 695,516 321,2 0.44185 0.04138 0.00933 0.2125 0.008 40,97 34 8,725 36,46 343,8 9.4 21 467,860 207,0 0.44246 0.21384 0.00933 0.2126 0.006 40,93 34 8,725 36,46 343,8 9.4 22 747,952 260,1 0.34785 0.03282 0.00997 0.09821 0.009 26,50 24,425 24,16 20.2 12,2 24,4								dx,						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								0.006		62	,		747,0	8.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											6,954		655,5	
19 568,213 339,8 0.59817 0.22790 0.00866 0.22692 0.007 56.40 42 12,80 49,79 435,7 8.8 20 695,516 321,2 0.46185 0.04198 0.00933 0.21285 0.008 40,99 34 8,725 36,46 343,8 9.4 21 467,860 207,0 0.44246 0.21384 0.00933 0.02125 0.009 29,02 20,28 30,76 307,4 10. 23 533,404 173,7 0.32665 0.09669 0.00997 0.09521 0.009 29,60 28 2,818 28,05 276,6 9.9 24 494,062 145,4 0.29449 0.16784 0.01029 0.16898 0.009 26,50 25 4,425 24,16 24,16 24,6 10. 25 568,815 139,3 0.24560 0.04023 0.010 2,680 21 1,857 18,5 10. 27 480,488 102,5 0.21349 0.12433 0.01112 0.04662 0.010 18,86				0.84814				0.006				73,58		
20 695,516 321,2 0.46185 0.04198 0.00911 0.04179 0.008 43,17 38 1,804 42,08 385,9 9.2 21 467,860 207,0 0.44246 0.21384 0.00933 0.21285 0.008 40,99 34 8,725 36,46 343,8 9.4 22 747,962 260,1 0.34785 0.06382 0.00997 0.0951 0.009 29,60 28 2,818 28,06 276,66 9.9 24 494,062 145,4 0.29449 0.16744 0.01029 0.16688 0.009 26,50 25 4,425 24,16 248,6 10. 25 568,815 139,3 0.24566 0.04233 0.01104 0.1284 0.010 18,60 19 2,301 17,36 183,5 10. 26 478,670 112,3 0.23468 0.01125 0.04689 0.01125 0.04662 0.010 16,11 17 751 15,65 162,2<	18	667,145	462,5	0.69335	0.13727	0.00811	0.13671	0.007			9,011		496,9	8.1
21 467,860 207,0 0.44246 0.21384 0.00933 0.21285 0.008 40,99 34 8,725 36,46 343,8 9.4 22 747,962 200,1 0.34785 0.00382 0.009521 0.009 31,92 29 2.028 30,76 307,4 10. 23 533,404 173,7 0.32565 0.09669 0.00997 0.09521 0.009 26,60 28 2.818 28,05 27,66 9.9 24 494,062 145,4 0.29449 0.16784 0.01029 0.06890 0.010 2,60 28 2.818 2.818 2.45 2.41,6 10. 25 568,815 139,3 0.24506 0.04236 0.01014 0.1264 0.010 16,11 17 751 15,65 166,2 10. 28 514,180 96,12 0.18695 0.04266 0.01147 0.11244 0.011 12,28 14 -321 12,37 136,8 11.	19	568,213	339,8	0.59817	0.22790	0.00856	0.22692	0.007	56,40	42	12,80	49,79	435,7	8.8
22 747,962 260,1 0.34785 0.06382 0.00965 0.06351 0.009 31,92 29 2.028 30,76 307,4 10. 23 533,404 173,7 0.32565 0.09969 0.00997 0.09521 0.009 29,60 28 2.818 28,05 276,6 9.9 24 494,062 145,4 0.29449 0.16784 0.01029 0.16698 0.009 26,50 25 4,425 24,16 248,6 10. 25 568,815 139,3 0.24566 0.04236 0.01082 0.08980 0.010 21,82 22 9.20 21,25 224,4 10. 26 478,570 112,3 0.23468 0.09029 0.01082 0.08980 0.010 16,11 17 751 15,55 166,2 10. 28 514,180 96,12 0.18695 0.02426 0.01168 10.2011 12,46 14 1,465 116,65 110. 13,73 150,55 </td <td>20</td> <td>695,516</td> <td>321,2</td> <td>0.46185</td> <td>0.04198</td> <td>0.00901</td> <td>0.04179</td> <td>0.008</td> <td>43,17</td> <td>38</td> <td>1,804</td> <td>42,08</td> <td>385,9</td> <td>9.2</td>	20	695,516	321,2	0.46185	0.04198	0.00901	0.04179	0.008	43,17	38	1,804	42,08	385,9	9.2
23 533,404 173,7 0.32565 0.09569 0.0097 0.09521 0.009 29,60 28 2,818 28,05 276,6 9.9 24 494,062 145,4 0.29449 0.16784 0.01029 0.16698 0.009 26,50 25 4,425 24,16 248,6 10. 25 568,815 139,3 0.24506 0.00290 0.01082 0.0980 0.010 21,82 22 920 21,25 224,4 10. 26 478,570 112,3 0.24686 0.00290 0.01082 0.0980 0.010 18,60 19 2,301 17,36 183,5 10. 28 514,180 96,12 0.18695 0.04898 0.01125 0.04662 0.010 16,11 17 751 15,65 166,2 10. 29 411,604 73,34 0.11825 0.01205 0.11754 0.011 12,28 14 4.321 12,37 136,8 11. <		467,860	207,0	0.44246	0.21384	0.00933	0.21285	0.008	40,99		8,725	36,46	343,8	9.4
24 494,062 145,4 0.29449 0.16784 0.01029 0.16698 0.009 26,50 25 4,425 24,16 248,6 10. 25 568,815 139,3 0.24506 0.04236 0.01061 0.04213 0.010 21,82 22 920 21,25 224,4 10. 26 478,570 112,3 0.23468 0.0029 0.01082 0.08980 0.010 18,60 19 2,301 17,36 183,5 10. 27 480,488 102,5 0.21349 0.17818 0.01125 0.04662 0.010 16,11 17 751 15,65 16,62 10. 29 411,604 73,34 0.17818 0.18147 0.01125 0.04662 0.011 12,48 14 -321 12,37 136,8 11. 30 603,626 88,03 0.14585 0.0226 0.01276 0.01937 0.012 10,85 13 139 10,72 112,7 10. <	22	747,962	260,1	0.34785	0.06382	0.00965	0.06351	0.009	31,92	29	2,028	30,76	307,4	10.
25 568,815 139,3 0.24506 0.04236 0.01061 0.04213 0.010 21,82 22 920 21,25 224,4 10. 26 478,570 112,3 0.23468 0.09029 0.01082 0.08980 0.010 20,68 21 1,857 19,64 203,2 10. 27 480,488 102,5 0.21349 0.12433 0.01140 0.12662 0.010 16,11 17 751 15,65 166,2 10. 28 514,180 96,12 0.14895 0.02626 0.01147 0.18043 0.010 15,18 15 2,740 13,73 150,5 11. 30 603,626 88,03 0.14585 -0.02626 0.01175 0.011 12,46 14 1,465 11,66 124,4 10. 32 481,933 63,60 0.13188 0.01227 0.01276 0.0129 10,85 13 139 10,72 112,7 10. 33 <td< td=""><td>23</td><td>533,404</td><td>173,7</td><td>0.32565</td><td>0.09569</td><td>0.00997</td><td>0.09521</td><td>0.009</td><td>29,60</td><td>28</td><td>2,818</td><td>28,05</td><td>276,6</td><td>9.9</td></td<>	23	533,404	173,7	0.32565	0.09569	0.00997	0.09521	0.009	29,60	28	2,818	28,05	276,6	9.9
26 478,570 112,3 0.23468 0.09029 0.01082 0.08980 0.010 20,68 21 1,857 19,64 203,2 10. 27 480,488 102,5 0.21349 0.12433 0.01104 0.12364 0.010 18,60 19 2,301 17,36 183,5 10. 28 514,180 96,12 0.18695 0.04689 0.01125 0.04662 0.010 16,11 17 751 15,65 166,2 10. 29 411,604 73,34 0.17818 0.11825 0.01205 0.0111 12,28 14 -321 12,37 136,8 11. 30 603,626 88,03 0.14865 -0.02626 0.01125 0.0112 10,85 13 139 10,72 112,7 10. 32 481,933 63,60 0.13198 0.01227 0.0137 0.012 10,85 13 139 10,72 112,7 10. 33 301,846	24	494,062	145,4	0.29449	0.16784	0.01029	0.16698	0.009	26,50	25	4,425	24,16	248,6	10.
27 480,488 102,5 0.21349 0.12433 0.01104 0.12364 0.010 18,60 19 2,301 17,36 183,5 10. 28 514,180 96,12 0.18695 0.04689 0.01125 0.04662 0.010 16,11 17 751 15,65 166,2 10. 29 411,604 73,34 0.17818 0.18147 0.01147 0.18043 0.010 15,18 15 2,740 13,73 150,5 11. 30 603,626 88,03 0.14585 -0.02626 0.01168 -0.02611 0.011 12,28 14 -321 12,37 136,8 11. 31 289,484 43,32 0.14968 0.11825 0.01278 0.0117 10.185 13 139 10,72 112,7 10. 33 301,846 39,32 0.13028 0.10172 0.0137 0.012 10,85 12 1,188 9,42 102,0 10. 33 301,846 39,32 0.10351 0.04370 0.01232 0.013 8,193 1	25	568,815	139,3	0.24506	0.04236	0.01061	0.04213	0.010	21,82	22	920	21,25	224,4	10.
28 514,180 96,12 0.18695 0.04689 0.01125 0.04662 0.010 16,11 17 751 15,65 166,2 10. 29 411,604 73,34 0.17818 0.18147 0.01147 0.18043 0.010 15,18 15 2,740 13,73 150,5 11. 30 603,626 88,03 0.14585 -0.02626 0.01168 -0.02611 0.011 12,28 14 -321 12,37 136,8 11. 31 289,484 43,32 0.14968 0.11825 0.01205 0.11754 0.011 12,46 14 1,465 11,66 124,4 10. 32 481,933 63,60 0.13198 0.01227 0.01279 0.012 10,58 12 1,58 9,42 102,0 10. 33 301,846 39,32 0.13025 0.04340 0.013 8,193 10 356 7,961 83,36 10. 34 340,811	26	478,570	112,3	0.23468	0.09029	0.01082	0.08980	0.010	20,68	21	1,857	19,64	203,2	10.
29 411,604 73,34 0.17818 0.18147 0.01147 0.18043 0.010 15,18 15 2,740 13,73 150,5 11. 30 603,626 88,03 0.14585 -0.02626 0.01168 -0.02611 0.011 12,28 14 -321 12,37 136,8 11. 31 289,484 43,32 0.14968 0.11825 0.01205 0.11754 0.011 12,46 14 1,465 11,66 124,4 10. 32 481,933 63,60 0.13198 0.01287 0.01242 0.01279 0.012 10,85 13 139 10,72 112,7 10. 33 301,846 39,32 0.13028 0.11072 0.01315 0.10937 0.012 19,58 12 1,58 9,42 102,0 10. 34 331,477 38,43 0.11054 0.01352 0.04340 0.014 7,729 11 180 7,544 99. 37 <t< td=""><td>27</td><td>480,488</td><td>102,5</td><td>0.21349</td><td>0.12433</td><td>0.01104</td><td>0.12364</td><td>0.010</td><td>18,60</td><td>19</td><td>2,301</td><td>17,36</td><td>183,5</td><td>10.</td></t<>	27	480,488	102,5	0.21349	0.12433	0.01104	0.12364	0.010	18,60	19	2,301	17,36	183,5	10.
30 603,626 88,03 0.14585 -0.02626 0.01168 -0.02611 0.011 12,28 14 -321 12,37 136,8 11. 31 289,484 43,32 0.14968 0.11825 0.01205 0.11754 0.011 12,46 14 1,465 11,66 124,4 10. 32 481,933 63,60 0.13198 0.01287 0.01279 0.012 10,85 13 139 10,72 112,7 10. 33 301,846 39,32 0.13028 0.1107 0.01278 0.10937 0.012 10,58 12 1,158 9,42 102,0 10. 34 331,477 38,43 0.11594 0.10722 0.01315 0.10652 0.012 9,299 11 991 8,746 92,11 10. 35 392,503 40,62 0.10351 0.04340 0.013 8,193 10 356 7,961 83,36 10. 36 340,811 33	28	514,180	96,12	0.18695	0.04689	0.01125	0.04662	0.010	16,11	17	751	15,65	166,2	10.
31 289,484 43,32 0.14968 0.11825 0.01205 0.11754 0.011 12,46 14 1,465 11,66 124,4 10. 32 481,933 63,60 0.13198 0.01287 0.01242 0.01279 0.012 10,85 13 139 10,72 112,7 10. 33 301,846 39,32 0.13028 0.11007 0.01278 0.10937 0.012 10,58 12 1,158 9,942 102,0 10. 34 331,477 38,43 0.11594 0.10722 0.01315 0.10652 0.012 9,299 11 991 8,746 92,11 10. 35 392,503 40,62 0.10351 0.04370 0.01352 0.04340 0.013 8,193 10 356 7,961 83,36 10. 36 340,811 33,73 0.09898 0.02341 0.01449 0.02324 0.014 7,439 11 649 7,599 67,82 9.6	29	411,604	73,34	0.17818	0.18147	0.01147	0.18043	0.010	15,18	15	2,740	13,73	150,5	11.
32 481,933 63,60 0.13198 0.01287 0.01242 0.01279 0.012 10,85 13 139 10,72 112,7 10. 33 301,846 39,32 0.13028 0.11007 0.01278 0.10937 0.012 10,58 12 1,158 9,942 102,0 10. 34 331,477 38,43 0.11594 0.10722 0.01315 0.10652 0.012 9,299 11 991 8,746 92,11 10. 35 392,503 40,62 0.10351 0.04370 0.01352 0.04340 0.013 8,193 10 356 7,961 83,36 10. 36 340,811 33,73 0.09898 0.02341 0.0149 0.02324 0.014 7,729 11 180 7,584 7,540 9.9 37 294,165 28,43 0.09667 0.08788 0.01642 -0.02367 0.016 6,680 11 -158 6,704 60,76 9.1 39 246,236 22,22 0.09028 0.14088 0.01739 0.1	30	603,626	88,03	0.14585	-0.02626	0.01168	-0.02611	0.011	12,28	14	-321	12,37	136,8	11.
33 301,846 39,32 0.13028 0.11007 0.01278 0.10937 0.012 10,58 12 1,158 9,942 102,0 10. 34 331,477 38,43 0.11594 0.10722 0.01315 0.10652 0.012 9,299 11 991 8,746 92,11 10. 35 392,503 40,62 0.10351 0.04370 0.01352 0.04340 0.013 8,193 10 356 7,961 83,36 10. 36 340,811 33,73 0.09898 0.02341 0.01449 0.02324 0.014 7,729 11 180 7,584 75,40 9.9 37 294,165 28,43 0.09667 0.08788 0.01642 -0.02367 0.016 6,680 11 -158 6,704 60,76 9.1 39 246,236 22,22 0.09028 0.14088 0.01739 0.13965 0.016 6,727 10 939 6,203 54,05 8.7	31	289,484	43,32	0.14968	0.11825	0.01205	0.11754	0.011	12,46	14	1,465	11,66	124,4	10.
34331,47738,430.115940.107220.013150.106520.0129,299119918,74692,1110.35392,50340,620.103510.043700.013520.043400.0138,193103567,96183,3610.36340,81133,730.098980.023410.014490.023240.0147,729111807,58475,409.937294,16528,430.096670.087880.015460.087210.0147,439116497,05967,829.638365,06232,180.08817-0.023860.01642-0.023670.0166,68011-1586,70460,769.139246,23622,220.090280.140880.017390.139650.0166,727109396,20354,058.740423,48132,840.07756-0.056120.01836-0.055610.0185,67910-3165,78347,858.341176,93814,490.081910.055470.019210.054940.0185,888113235,67142,077.442335,10825,920.07737-0.013780.02005-0.013640.0205,418103765,17630,966.044199,40014,540.072940.056070.021730.055460.0214,934102744,74525,78 </td <td>32</td> <td>481,933</td> <td>63,60</td> <td>0.13198</td> <td>0.01287</td> <td>0.01242</td> <td>0.01279</td> <td>0.012</td> <td>10,85</td> <td>13</td> <td>139</td> <td>10,72</td> <td>112,7</td> <td>10.</td>	32	481,933	63,60	0.13198	0.01287	0.01242	0.01279	0.012	10,85	13	139	10,72	112,7	10.
35392,50340,620.103510.043700.013520.043400.0138,193103567,96183,3610.36340,81133,730.098980.023410.014490.023240.0147,729111807,58475,409.937294,16528,430.096670.087880.015460.087210.0147,439116497,05967,829.638365,06232,180.08817-0.023860.01642-0.023670.0166,68011-1586,70460,769.139246,23622,220.090280.140880.017390.139650.0166,727109396,20354,058.740423,48132,840.07756-0.056120.01836-0.055610.0185,67910-3165,78347,858.341176,93814,490.081910.055470.019210.054940.0185,888113235,67142,077.442335,10825,920.07737-0.013780.020890.069310.0205,45411-745,43636,406.743230,32618,060.078430.070040.020890.069310.0205,418103765,17630,966.044199,40014,540.072940.056070.021730.055460.0214,934102744,74525,78 <td>33</td> <td>301,846</td> <td>39,32</td> <td>0.13028</td> <td>0.11007</td> <td>0.01278</td> <td>0.10937</td> <td>0.012</td> <td>10,58</td> <td>12</td> <td>1,158</td> <td>9,942</td> <td>102,0</td> <td>10.</td>	33	301,846	39,32	0.13028	0.11007	0.01278	0.10937	0.012	10,58	12	1,158	9,942	102,0	10.
36340,81133,730.098980.023410.014490.023240.0147,729111807,58475,409.937294,16528,430.096670.087880.015460.087210.0147,439116497,05967,829.638365,06232,180.08817-0.023860.01642-0.023670.0166,68011-1586,70460,769.139246,23622,220.090280.140880.017390.139650.0166,727109396,20354,058.740423,48132,840.07756-0.056120.01836-0.055610.0185,67910-3165,78347,858.341176,93814,490.081910.055470.019210.054940.0185,888113235,67142,077.442335,10825,920.07737-0.013780.0205-0.013640.0205,418103765,17630,966.044199,40014,540.072940.056070.021730.055460.0214,934102744,74525,785.445297,53520,480.06835-0.05770.02258-0.05700.0224,55610-264,51721,044.746202,63914,030.066730.12030.026710.118630.0254,209104993,90712,18 <td>34</td> <td>331,477</td> <td>38,43</td> <td>0.11594</td> <td>0.10722</td> <td>0.01315</td> <td>0.10652</td> <td>0.012</td> <td>9,299</td> <td>11</td> <td>991</td> <td>8,746</td> <td>92,11</td> <td>10.</td>	34	331,477	38,43	0.11594	0.10722	0.01315	0.10652	0.012	9,299	11	991	8,746	92,11	10.
37294,16528,430.096670.087880.015460.087210.0147,439116497,05967,829.638365,06232,180.08817-0.023860.01642-0.023670.0166,68011-1586,70460,769.139246,23622,220.090280.140880.017390.139650.0166,727109396,20354,058.740423,48132,840.07756-0.056120.01836-0.055610.0185,67910-3165,78347,858.341176,93814,490.081910.055470.019210.054940.0185,888113235,67142,077.442335,10825,920.07737-0.013780.02005-0.013640.0205,45411-745,43636,406.743230,32618,060.078430.070040.020890.069310.0205,418103765,17630,966.044199,40014,540.072940.056070.021730.055460.0214,934102744,74525,785.445297,53520,480.06885-0.005770.02258-0.005700.0224,55610-264,51721,044.746202,63914,030.069250.036370.024640.035920.0244,479101614,34416,52	35	392,503	40,62	0.10351	0.04370	0.01352	0.04340	0.013	8,193	10	356	7,961	83,36	10.
38 365,062 32,18 0.08817 -0.02386 0.01642 -0.02367 0.016 6,680 11 -158 6,704 60,76 9.1 39 246,236 22,22 0.09028 0.14088 0.01739 0.13965 0.016 6,727 10 939 6,203 54,05 8.7 40 423,481 32,84 0.07756 -0.05612 0.01836 -0.05561 0.018 5,679 10 -316 5,783 47,85 8.3 41 176,938 14,49 0.08191 0.05547 0.01921 0.05494 0.018 5,888 11 323 5,671 42,07 7.4 42 335,108 25,92 0.07737 -0.01378 0.02005 -0.01364 0.020 5,454 11 -74 5,436 36,40 6.7 43 230,326 18,06 0.07843 0.07004 0.02089 0.06931 0.020 5,418 10 376 5,176 30,96 6.0	36	340,811	33,73	0.09898	0.02341	0.01449	0.02324	0.014	7,729	11	180	7,584	75,40	9.9
39 246,236 22,22 0.09028 0.14088 0.01739 0.13965 0.016 6,727 10 939 6,203 54,05 8.7 40 423,481 32,84 0.07756 -0.05612 0.01836 -0.05561 0.018 5,679 10 -316 5,783 47,85 8.3 41 176,938 14,49 0.08191 0.05547 0.01921 0.05494 0.018 5,888 11 323 5,671 42,07 7.4 42 335,108 25,92 0.07737 -0.01378 0.02005 -0.01364 0.020 5,454 11 -74 5,436 36,40 6.7 43 230,326 18,06 0.07843 0.07004 0.02089 0.06931 0.020 5,418 10 376 5,176 30,96 6.0 44 199,400 14,54 0.07294 0.05607 0.02173 0.05546 0.021 4,934 10 274 4,745 25,78 5.4 45 297,535 20,48 0.06885 -0.00577 0.02258	37	294,165	28,43	0.09667	0.08788	0.01546	0.08721	0.014	7,439	11	649	7,059	67,82	9.6
40423,48132,840.07756-0.056120.01836-0.055610.0185,67910-3165,78347,858.341176,93814,490.081910.055470.019210.054940.0185,888113235,67142,077.442335,10825,920.07737-0.013780.02005-0.013640.0205,45411-745,43636,406.743230,32618,060.078430.070040.020890.069310.0205,418103765,17630,966.044199,40014,540.072940.056070.021730.055460.0214,934102744,74525,785.445297,53520,480.06885-0.005770.02258-0.005700.0224,55610-264,51721,044.746202,63914,030.069250.036370.026710.118630.0254,209104993,90712,183.148259,94515,260.05870-0.068370.02878-0.067380.0293,60410-2433,6728,2762.349172,13510,790.062720.245830.030840.242040.0273,740109053,2374,6041.4	38	365,062	32,18	0.08817	-0.02386	0.01642	-0.02367	0.016	6,680	11	-158	6,704	60,76	9.1
41176,93814,490.081910.055470.019210.054940.0185,888113235,67142,077.442335,10825,920.07737-0.013780.02005-0.013640.0205,45411-745,43636,406.743230,32618,060.078430.070040.020890.069310.0205,418103765,17630,966.044199,40014,540.072940.056070.021730.055460.0214,934102744,74525,785.445297,53520,480.06885-0.005770.02258-0.005700.0224,55610-264,51721,044.746202,63914,030.069250.036370.024640.035920.0244,479101614,34416,523.847210,94714,070.066730.120230.026710.118630.0254,209104993,90712,183.148259,94515,260.05870-0.068370.02878-0.067380.0293,60410-2433,6728,2762.349172,13510,790.062720.245830.030840.242040.0273,740109053,2374,6041.4	39	246,236	22,22	0.09028	0.14088	0.01739	0.13965	0.016	6,727	10	939	6,203	54,05	8.7
42335,10825,920.07737-0.013780.02005-0.013640.0205,45411-745,43636,406.743230,32618,060.078430.070040.020890.069310.0205,418103765,17630,966.044199,40014,540.072940.056070.021730.055460.0214,934102744,74525,785.445297,53520,480.06885-0.005770.02258-0.005700.0224,55610-264,51721,044.746202,63914,030.069250.036370.024640.035920.0244,479101614,34416,523.847210,94714,070.066730.120230.026710.118630.0254,209104993,90712,183.148259,94515,260.05870-0.068370.02878-0.067380.0293,60410-2433,6728,2762.349172,13510,790.062720.245830.030840.242040.0273,740109053,2374,6041.4	40	423,481	32,84	0.07756	-0.05612	0.01836	-0.05561	0.018	5,679	10	-316	5,783	47,85	8.3
43 230,326 18,06 0.07843 0.07004 0.02089 0.06931 0.020 5,418 10 376 5,176 30,96 6.0 44 199,400 14,54 0.07294 0.05607 0.02173 0.05546 0.021 4,934 10 274 4,745 25,78 5.4 45 297,535 20,48 0.06885 -0.00577 0.02258 -0.00570 0.022 4,556 10 -26 4,517 21,04 4.7 46 202,639 14,03 0.06925 0.03637 0.02464 0.03592 0.024 4,479 10 161 4,344 16,52 3.8 47 210,947 14,07 0.06673 0.12023 0.02671 0.11863 0.025 4,209 10 499 3,907 12,18 3.1 48 259,945 15,26 0.05870 -0.06837 0.02878 -0.06738 0.029 3,604 10 -243 3,672 8,276 2.3 49 172,135 10,79 0.06272 0.24583 0.03084 0	41	176,938	14,49	0.08191	0.05547	0.01921	0.05494	0.018	5,888		323	5,671	42,07	7.4
44199,40014,540.072940.056070.021730.055460.0214,934102744,74525,785.445297,53520,480.06885-0.005770.02258-0.005700.0224,55610-264,51721,044.746202,63914,030.069250.036370.024640.035920.0244,479101614,34416,523.847210,94714,070.066730.120230.026710.118630.0254,209104993,90712,183.148259,94515,260.05870-0.068370.02878-0.067380.0293,60410-2433,6728,2762.349172,13510,790.062720.245830.030840.242040.0273,740109053,2374,6041.4	42	335,108	25,92	0.07737	-0.01378	0.02005	-0.01364	0.020	5,454		-74	5,436	36,40	6.7
45297,53520,480.06885-0.005770.02258-0.005700.0224,55610-264,51721,044.746202,63914,030.069250.036370.024640.035920.0244,479101614,34416,523.847210,94714,070.066730.120230.026710.118630.0254,209104993,90712,183.148259,94515,260.05870-0.068370.02878-0.067380.0293,60410-2433,6728,2762.349172,13510,790.062720.245830.030840.242040.0273,740109053,2374,6041.4	43		18,06	0.07843			0.06931	0.020		10	376	5,176	30,96	6.0
46202,63914,030.069250.036370.024640.035920.0244,479101614,34416,523.847210,94714,070.066730.120230.026710.118630.0254,209104993,90712,183.148259,94515,260.05870-0.068370.02878-0.067380.0293,60410-2433,6728,2762.349172,13510,790.062720.245830.030840.242040.0273,740109053,2374,6041.4	44	199,400	14,54	0.07294	0.05607	0.02173	0.05546	0.021	4,934	10	274	4,745	25,78	5.4
47210,94714,070.066730.120230.026710.118630.0254,209104993,90712,183.148259,94515,260.05870-0.068370.02878-0.067380.0293,60410-2433,6728,2762.349172,13510,790.062720.245830.030840.242040.0273,740109053,2374,6041.4	45	297,535	20,48	0.06885	-0.00577	0.02258	-0.00570	0.022	4,556	10	-26		21,04	4.7
48 259,945 15,26 0.05870 -0.06837 0.02878 -0.06738 0.029 3,604 10 -243 3,672 8,276 2.3 49 172,135 10,79 0.06272 0.24583 0.03084 0.24204 0.027 3,740 10 905 3,237 4,604 1.4	46	202,639	14,03	0.06925	0.03637	0.02464	0.03592	0.024	4,479	10	161	4,344	16,52	3.8
49 172,135 10,79 0.06272 0.24583 0.03084 0.24204 0.027 3,740 10 905 3,237 4,604 1.4	47	210,947	14,07	0.06673	0.12023	0.02671	0.11863	0.025	4,209	10	499	3,907	12,18	3.1
49 172,135 10,79 0.06272 0.24583 0.03084 0.24204 0.027 3,740 10 905 3,237 4,604 1.4	48	259,945	15,26	0.05870	-0.06837	0.02878	-0.06738	0.029	3,604	10	-243	3,672	8,276	2.3
50+ 3,418,44 161,6 0.04730 1.00000 0.34473 0.82764 0.172 2,734 47 2,262 1,367 1,367 1.0	49	172,135	10,79		0.24583	0.03084	0.24204	0.027	3,740	10	905	3,237	4,604	1.4
	50+	3,418,44	161,6	0.04730	1.00000	0.34473	0.82764	0.172	2,734	47	2,262	1,367	1,367	1.0

Appendix 3.14: Net Nuptiality Table for Females; Tanzania, 2022 PHC

Male s			Proporti on Single	Probabili ty of Marriage	Probabili ty of Dying at Age x	Net Probabili ty of Marriage							
X	Populati	Single	Sx	nx	qx	nx`	dx,	lx`	dx`	Nx`	Lx`	Tx`	ex`
15	609,141	607,44	0.99722	0.00836	0.01544	0.00829	0.0153	91,66	1,40	760	90,57	956,82	10.
16	606,708	599,96	0.98889	0.00477	0.01635	0.00473	0.0163	89,49	1,46	424	88,55	866,24	9.8
17	620,506	610,68	0.98417	0.01767	0.01726	0.01751	0.0171	87,61	1,49	1,53	86,09	777,68	9.0
18	608,399	588,18	0.96678	0.02565	0.01817	0.02541	0.0179	84,57	1,51	2,14	82,74	691,59	8.4
19	490,557	462,09	0.94199	0.07431	0.01908	0.07360	0.0183	80,91	1,48	5,95	77,19	608,85	7.9
20	571,707	498,52	0.87199	0.05464	0.01999	0.05410	0.0194	73,47	1,42	3,97	70,76	531,66	7.5
21	397,924	328,02	0.82434	0.10629	0.02016	0.10522	0.0190	68,06	1,29	7,16	63,83	460,89	7.2
22	604,892	445,63	0.73672	0.12356	0.02033	0.12230	0.0190	59,60	1,13	7,29	55,39	397,05	7.2
23	438,083	282,86	0.64569	0.11720	0.02051	0.11600	0.0193	51,17	988	5,93	47,71	341,66	7.2
24	408,554	232,88	0.57002	0.14349	0.02068	0.14201	0.0191	44,25	849	6,28	40,68	293,94	7.2
25	488,064	238,28	0.48822	0.11645	0.02085	0.11524	0.0196	37,12	729	4,27	34,61	253,26	7.3
26	399,839	172,47	0.43137	0.13186	0.02117	0.13046	0.0197	32,11	635	4,19	29,70	218,64	7.4
27	424,871	159,11	0.37449	0.12090	0.02148	0.11960	0.0201	27,28	551	3,26	25,38	188,94	7.4
28	437,735	144,11	0.32922	0.13410	0.02180	0.13263	0.0203	23,47	477	3,11	21,67	163,56	7.5
29	349,117	99,523	0.28507	0.17342	0.02212	0.17151	0.0202	19,88	402	3,41	17,97	141,88	7.9
30	512,332	120,72	0.23563	0.10596	0.02243	0.10477	0.0212	16,07	341	1,68	15,05	123,90	8.2
31	270,263	56,935	0.21067	0.12081	0.02296	0.11942	0.0215	14,04	303	1,67	13,05	108,84	8.3
32	448,904	83,144	0.18522	0.09658	0.02348	0.09545	0.0223	12,06	270	1,15	11,35	95,788	8.4
33	269,497	45,094	0.16733	0.13184	0.02400	0.13026	0.0224	10,64	239	1,38	9,832	84,433	8.6
34	300,179	43,606	0.14527	0.02260	0.02452	0.02233	0.0242	9,020	219	201	8,810	74,601	8.5
35	357,986	50,828	0.14198	0.13315	0.02504	0.13148	0.0233	8,600	201	1,13	7,934	65,791	8.3
36	300,109	36,937	0.12308	0.06694	0.02617	0.06606	0.0252	7,268	184	480	6,936	57,857	8.3
37	263,402	30,249	0.11484	0.07908	0.02729	0.07800	0.0262	6,604	173	515	6,260	50,921	8.1
38	319,928	33,835	0.10576	0.05762	0.02842	0.05680	0.0276	5,916	163	336	5,666	44,661	7.9
39	209,042	20,834	0.09966	0.02600	0.02954	0.02562	0.0291	5,416	158	139	5,268	38,995	7.4
40	367,291	35,654	0.09707	0.10144	0.03067	0.09988	0.0291	5,120	149	511	4,790	33,727	7.0
41	164,549	14,353	0.08723	0.04215	0.03217	0.04147	0.0315	4,459	140	185	4,297	28,937	6.7
42	317,918	26,562	0.08355	0.08193	0.03368	0.08055	0.0323	4,134	134	333	3,901	24,641	6.3
43	212,711	16,316	0.07671	0.03107	0.03519	0.03052	0.0346	3,668	127	112	3,548	20,740	5.8
44	185,114	13,758	0.07432	-0.03504	0.03670	-0.03440	0.0373	3,429	128	-118	3,423	17,192	5.0
45	290,461	22,344	0.07693	0.11874	0.03821	0.11647	0.0359	3,418	123	398	3,158	13,768	4.4
46	187,987	12,744	0.06779	0.01319	0.04137	0.01292	0.0411	2,897	119	37	2,819	10,610	3.8
47	193,654	12,955	0.06690	0.04278	0.04453	0.04183	0.0435	2,741	119	115	2,624	7,791	3.0
48	235,165	15,059	0.06404	0.01795	0.04769	0.01752	0.0472	2,507	118	44	2,426	5,167	2.1
49	158,969	9,997	0.06289	0.29470	0.05085	0.28721	0.0433	2,344	102	673	1,957	2,742	1.4
50+	2,963,02	131,42	0.04435	1.00000	0.38647	0.80677	0.1932	1,569	303	1,26	785	785	1.0

Appendix 3.15: Net Nuptiality Table for Males; Mainland Tanzania, 2022 PHC

Femal es			Proporti on Single	Probabili ty of Marriage	Probabili ty of Dying at Age x	Net Probabili ty of Marriage							
x	Populati	Single	Sx	nx	qx	nx`	qx`	lx`	dx	Nx`	Lx`	Tx`	ex`
15	598,076	578,8	0.96794	0.05120	0.00753	0.05101	0.007	93,91	68	4,791	91,17	738,2	8.1
16	614,694	564,5	0.91837	0.08090	0.00803	0.08058	0.007	88,43	68	7,126	84,53	647,0	7.7
17	606,576	511,9	0.84407	0.18665	0.00853	0.18585	0.007	80,62	62	14,98	72,82	562,5	7.
18	645,030	442,8	0.68653	0.13864	0.00903	0.13802	0.008	65,02	54	8,974	60,26	489,6	8.1
19	549,178	324,7	0.59135	0.22963	0.00953	0.22854	0.008	55,50	46	12,68	48,92	429,4	8.
20	672,947	306,5	0.45555	0.04238	0.01003	0.04216	0.009	42,34	41	1,786	41,24	380,4	9.2
21	451,103	196,7	0.43625	0.21292	0.01038	0.21181	0.009	40,14	37	8,504	35,70	339,2	9.
22	724,918	248,9	0.34336	0.06289	0.01073	0.06256	0.010	31,27	32	1,956	30,13	303,5	10
23	513,347	165,1	0.32177	0.09266	0.01108	0.09215	0.010	28,99	30	2,671	27,50	273,4	9.
24	477,284	139,3	0.29195	0.16544	0.01143	0.16449	0.010	26,01	27	4,279	23,73	245,9	10
25	549,937	133,9	0.24365	0.03918	0.01178	0.03895	0.011	21,46	24	836	20,91	222,1	10
26	462,207	108,2	0.23411	0.08587	0.01203	0.08535	0.011	20,37	23	1,739	19,39	201,2	10
27	463,017	99,08	0.21401	0.12368	0.01228	0.12292	0.011	18,40	21	2,262	17,16	181,8	10
28	497,763	93,34	0.18754	0.04348	0.01253	0.04321	0.012	15,92	19	688	15,48	164,6	1(
29	397,084	71,23	0.17938	0.17819	0.01279	0.17705	0.011	15,04	17	2,664	13,62	149,2	10
30	583,096	85,95	0.14742	-0.02770	0.01304	-0.02752	0.013	12,20	16	-336	12,29	135,5	11
31	279,080	42,28	0.15150	0.11835	0.01344	0.11755	0.012	12,38	15	1,455	11,57	123,2	10
32	465,819	62,22	0.13357	0.00912	0.01384	0.00906	0.013	10,76	14	98	10,64	111,7	1(
33	290,715	38,47	0.13235	0.11264	0.01425	0.11184	0.013	10,52	14	1,177	9,864	101,0	1(
34	320,910	37,68	0.11744	0.10466	0.01465	0.10389	0.013	9,205	12	956	8,663	91,20	1(
35	378,897	39,84	0.10515	0.04217	0.01505	0.04186	0.014	8,121	12	340	7,891	82,53	1(
36	329,197	33,15	0.10072	0.01919	0.01604	0.01903	0.015	7,661	12	146	7,527	74,64	9.
37	282,643	27,92	0.09879	0.09288	0.01703	0.09209	0.016	7,393	12	681	6,993	67,11	9.
38	354,043	31,72	0.08961	-0.02778	0.01802	-0.02753	0.018	6,593	12	-181	6,623	60,12	9.
39	238,089	21,92	0.09210	0.14020	0.01901	0.13887	0.017	6,654	11	924	6,133	53,50	8.
40	409,472	32,42	0.07919	-0.05648	0.02000	-0.05591	0.020	5,612	11	-314	5,711	47,37	8.
41	171,062	14,31	0.08366	0.05306	0.02086	0.05250	0.020	5,810	11	305	5,599	41,65	7.
42	323,765	25,64	0.07922	-0.01152	0.02171	-0.01140	0.021	5,387	11	-61	5,359	36,06	6.
43	223,002	17,87	0.08013	0.07253	0.02257	0.07171	0.021	5,331	11	382	5,082	30,70	6.
44	193,483	14,38	0.07432	0.05214	0.02343	0.05153	0.022	4,833	11	249	4,653	25,61	5.
45	287,891	20,28	0.07045	-0.00481	0.02428	-0.00475	0.024	4,474	10	-21	4,430	20,96	4.
46	196,636	13,91	0.07079	0.02578	0.02640	0.02544	0.026	4,386	11	112	4,273	16,53	3.
47	201,853	13,92	0.06896	0.13562	0.02852	0.13369	0.026	4,160	11	556	3,827	12,26	3.
48	253,806	15,12	0.05961	-0.07500	0.03064	-0.07385	0.031	3,493	11	-258	3,567	8,437	2.
49	166,996	10,70	0.06408	0.13384	0.03275	0.13164	0.030	3,640	11	479	3,345	4,870	1.
50+	302,901	16,81	0.05550	1.00000	0.34333	0.82834	0.171	3,050	52	2,526	1,525	1,525	1.

Appendix 3.16: Net Nuptiality Table for Females; Mainland Tanzania, 2022 PHC

Males			Proportion Single	Probability of Marriage	Probability of Dying at Age x	Net Probability of Marriage							
x	Population	Singles	Sx	nx	qx	nx`	qx`	lx`	dx`	Nx`	Lx`	Tx`	ex`
15	19,690	19,654	0.99817	0.00503	0.01552	0.00499	0.01548	90,217	1,397	450	89,293	1,026,724	11.5
16		19,002	0.99315	0.00174	0.01643	0.00173	0.01642	88,370	1,451	153	87,568	937,431	10.7
17		19,651	0.99142	0.00361	0.01734	0.00358	0.01731	86,766	1,502	311	85,860	849,863	9.9
18		20,392	0.98784	0.01127	0.01825	0.01116	0.01815	84,953	1,542	948	83,708	764,004	9.1
19		16,357	0.97671	0.02683	0.01916	0.02657	0.01891	82,463	1,559	2,191	80,588	680,296	8.4
20		19,072	0.95051	0.02187	0.02007	0.02165	0.01985	78,713	1,563	1,704	77,079	599,708	7.8
21	14,898	13,851	0.92972	0.05589	0.02025	0.05532	0.01968	75,446	1,485	4,174	72,617	522,628	7.2
22	19,986	17,543	0.87776	0.07991	0.02042	0.07909	0.01960	69,787	1,368	5,520	66,343	450,012	6.8
23	17,029	13,753	0.80762	0.09098	0.02059	0.09005	0.01966	62,899	1,236	5,664	59,449	383,668	6.5
24		10,695	0.73414	0.12220	0.02076	0.12093	0.01950	55,999	1,092	6,772	52,067	324,219	6.2
25	17,164	11,061	0.64443	0.11435	0.02094	0.11316	0.01974	48,135	950	5,447	44,937	272,152	6.1
26	14,455	8,250	0.57074	0.17376	0.02126	0.17192	0.01941	41,738	810	7,175	37,746	227,215	6.0
27	15,667	7,388	0.47156	0.15897	0.02157	0.15725	0.01986	33,753	670	5,308	30,764	189,469	6.2
28	14,647	5,809	0.39660	0.14648	0.02189	0.14488	0.02029	27,775	564	4,024	25,481	158,705	6.2
29	12,570	4,255	0.33850	0.23156	0.02221	0.22899	0.01964	23,187	455	5,310	20,305	133,224	6.6
30	17,492	4,550	0.26012	0.17849	0.02253	0.17648	0.02052	17,422	357	3,075	15,706	112,920	7.2
31	9,701	2,073	0.21369	0.13457	0.02305	0.13302	0.02150	13,990	301	1,861	12,909	97,214	7.5
32		2,752	0.18493	0.16798	0.02358	0.16600	0.02160	11,828	255	1,963	10,719	84,305	7.9
33	10,171	1,565	0.15387	0.18649	0.02410	0.18424	0.02185	9,609	210	1,770	8,619	73,586	8.5
34	10,050	1,258	0.12517	0.05414	0.02462	0.05348	0.02396	7,629	183	408	7,334	64,967	8.9
35		1,468	0.11840	0.19055	0.02515	0.18815	0.02275	7,038	160	1,324	6,296	57,633	9.2
36		969	0.09584	0.14234	0.02628	0.14047	0.02441	5,554	136	780	5,096	51,337	10.1
37	9,733	800	0.08219	-0.03081	0.02741	-0.03038	0.02783	4,638	129	-141	4,644	46,241	10.0
38	9,808	831	0.08473	0.12586	0.02854	0.12406	0.02674	4,650	124	577	4,299	41,597	9.7
39		508	0.07406	0.13522	0.02966	0.13321	0.02766	3,949	109	526	3,631	37,298	10.3
40	12,553	804	0.06405	0.14682	0.03079	0.14456	0.02853	3,313	95	479	3,027	33,667	11.1
41	5,307	290	0.05464	0.04923	0.03230	0.04844	0.03151	2,740	86	133	2,630	30,640	11.6
42		525	0.05195	-0.02666	0.03382	-0.02621	0.03427	2,521	86	-66	2,511	28,010	11.2
43		353	0.05334	0.08961	0.03533	0.08803	0.03375	2,501	84	220	2,348	25,499	10.9
44	5,519	268	0.04856	0.04707	0.03684	0.04620	0.03597	2,196	79	101	2,106	23,151	11.0
45		439	0.04627	0.06313	0.03835	0.06192	0.03714	2,016	75	125	1,916	21,045	11.0
46		240	0.04335	0.15253	0.04152	0.14937	0.03835	1,816	70	271	1,645	19,129	11.6
47	7,104	261	0.03674	-0.28679	0.04469	-0.28038	0.05109	1,475	75	-414	1,644	17,484	10.6
48	5,838	276	0.04728	0.11499	0.04785	0.11224	0.04510	1,813	82	204	1,671	15,839	9.5
49	4,565	191	0.04184	-8.24472	0.05102	-8.03442	0.26132	1,528	399	-12,276	7,466	14,169	1.9
E۵.	00 500	0.045	0 20000	1 00000	0.05440	0.07004	0.00700	40.405	202	40.040	6 700	0 700	4.0

Appendix 3.17: Net Nuptiality Table for Males; Tanzania Zanzibar, 2022 PHC

50+

88,580

2,215

0.38680

1.00000

0.05418

0.97291

0.02709

13,405

363

13,042

6,702

6,702

1.0

Appendix 3.18: Net Nuptiality Table for Females; Tanzania Zanzibar, 2022 PHC

Females			Proportion Single	Probability of Marriage	Probability of Dying at Age x	Net Probability of Marriage							
x	Population	Singles	Sx	nx	qx	nx`	dx,	lx`	dx`	Nx`	Lx`	Tx`	ex`
15	19,551	19,486	0.99668	0.01366	0.01044	0.01359	0.01037	93,019	965	1,264	91,905	738,261	8.0
16	20,548	20,200	0.98306	0.02104	0.01111	0.02092	0.01099	90,791	998	1,900	89,342	646,356	7.2
17	21,611	20,798	0.96238	0.07283	0.01178	0.07240	0.01135	87,893	997	6,364	84,213	557,014	6.6
18	22,115	19,733	0.89229	0.10885	0.01245	0.10817	0.01177	80,532	948	8,711	75,703	472,801	6.2
19	19,035	15,136	0.79517	0.18305	0.01311	0.18185	0.01191	70,873	844	12,889	64,007	397,099	6.2
20	22,569	14,661	0.64961	0.06132	0.01378	0.06090	0.01336	57,140	763	3,480	55,019	333,092	6.1
21	16,757	10,218	0.60978	0.19839	0.01425	0.19697	0.01284	52,897	679	10,419	47,348	278,074	5.9
22	23,044	11,264	0.48880	0.13076	0.01472	0.12980	0.01376	41,799	575	5,425	38,798	230,726	5.9
23	20,057	8,522	0.42489	0.13744	0.01519	0.13640	0.01415	35,798	507	4,883	33,104	191,927	5.8
24	16,778	6,149	0.36649	0.21964	0.01566	0.21792	0.01394	30,409	424	6,627	26,883	158,824	5.9
25	18,878	5,399	0.28599	0.12303	0.01614	0.12203	0.01514	23,358	354	2,850	21,756	131,940	6.1
26	16,363	4,104	0.25081	0.20331	0.01654	0.20163	0.01485	20,154	299	4,064	17,972	110,184	6.1
27	17,471	3,491	0.19982	0.15406	0.01694	0.15276	0.01563	15,791	247	2,412	14,461	92,212	6.4
28	16,417	2,775	0.16903	0.14030	0.01734	0.13908	0.01612	13,132	212	1,826	12,113	77,751	6.4
29	14,520	2,110	0.14532	0.30347	0.01774	0.30078	0.01504	11,094	167	3,337	9,342	65,638	7.0
30	20,530	2,078	0.10122	0.00481	0.01814	0.00477	0.01809	7,590	137	36	7,503	56,296	7.5
31	10,404	1,048	0.10073	0.14735	0.01868	0.14597	0.01731	7,417	128	1,083	6,811	48,793	7.2
32	16,114	1,384	0.08589	0.11404	0.01923	0.11294	0.01813	6,206	113	701	5,799	41,982	7.2
33	11,131	847	0.07609	0.07721	0.01978	0.07645	0.01902	5,392	103	412	5,135	36,183	7.0
34	10,567	742	0.07022	0.17835	0.02033	0.17654	0.01851	4,877	90	861	4,402	31,048	7.1
35	13,606	785	0.05770	0.13591	0.02087	0.13449	0.01946	3,926	76	528	3,624	26,646	7.4
36	11,614	579	0.04985	0.10343	0.02192	0.10230	0.02079	3,322	69	340	3,117	23,022	7.4
37	11,522	515	0.04470	0.06196	0.02297	0.06125	0.02226	2,913	65	178	2,791	19,905	7.1
38	11,019	462	0.04193	0.11881	0.02401	0.11738	0.02259	2,670	60	313	2,483	17,114	6.9
39	8,147	301	0.03695	0.19046	0.02506	0.18807	0.02267	2,296	52	432	2,054	14,631	7.1
40	14,009	419	0.02991	-0.03558	0.02611	-0.03511	0.02657	1,812	48	-64	1,820	12,577	6.9
41	5,876	182	0.03097	0.21157	0.02701	0.20871	0.02416	1,828	44	381	1,615	10,757	6.7
42	11,343	277	0.02442	-0.09027	0.02792	-0.08901	0.02918	1,402	41	-125	1,444	9,142	6.3
43	7,324	195	0.02662	-0.04101	0.02883	-0.04042	0.02942	1,486	44	-60	1,494	7,699	5.2
44	5,917	164	0.02772	0.23681	0.02973	0.23329	0.02621	1,502	39	350	1,307	6,205	4.7
45	9,644	204	0.02115	0.11011	0.03064	0.10842	0.02895	1,112	32	121	1,036	4,897	4.7
46	6,003	113	0.01882	0.08870	0.03293	0.08724	0.03147	960	30	84	903	3,861	4.3
47	9,094	156	0.01715	-0.24395	0.03521	-0.23966	0.03951	846	33	-203	930	2,959	3.2
48	6,139	131	0.02134	0.13369	0.03750	0.13119	0.03499	1,015	36	133	931	2,028	2.2
49	5,139	95	0.01849	0.16962	0.03979	0.16625	0.03641	846	31	141	760	1,098	1.4
50+	10,358	159	0.01535	1.00000	0.35952	0.82024	0.17976	675	121	553	337	337	1.0

Appendix 3.19: Adolescent Fertility Rate; Tanzania, 2022 PHC

Region		Total						Percentage	ASFR
		cific Fertility Ra	ites	Fertility (Births per	TFR Women (15 - 49)	Contribution of Women 15 - 19 to	ASEK		
	15	16	17	18	19	1000 Women)	(10 40)	TFR	15-19
Tanzania	0.009	0.025	0.06	0.122	0.172	76.5	4.6	1.7	0.0765
Mainland Tanzania	0.009	0.025	0.062	0.125	0.176	78.5	4.6	1.7	0.0785
Dodoma	0.014	0.041	0.088	0.151	0.19	95.2	4.7	2.0	0.0952
Arusha	0.012	0.019	0.037	0.093	0.135	59.9	4.7	1.3	0.0599
Kilimanjaro	0.005	0.011	0.029	0.071	0.117	44.0	4.6	1.0	0.0440
Tanga	0.009	0.024	0.057	0.119	0.174	72.3	3.7	2.0	0.0723
Morogoro	0.014	0.037	0.079	0.134	0.168	85.3	4.8	1.8	0.0853
Pwani	0.007	0.018	0.038	0.091	0.12	54.4	4.2	1.3	0.0544
Dar es Salaam	0.004	0.007	0.015	0.035	0.063	26.0	3.7	0.7	0.0260
Lindi	0.012	0.028	0.07	0.123	0.171	79.2	3.1	2.6	0.0792
Mtwara	0.012	0.033	0.082	0.142	0.188	90.0	3.7	2.4	0.0900
Ruvuma	0.017	0.04	0.102	0.161	0.206	103.9	4.2	2.5	0.1039
Iringa	0.004	0.015	0.04	0.09	0.137	53.7	4.6	1.2	0.0537
Мьеуа	0.009	0.024	0.061	0.109	0.143	69.3	4.1	1.7	0.0693
Singida	0.009	0.027	0.067	0.145	0.213	87.5	3.8	2.3	0.0875
Tabora	0.011	0.04	0.098	0.182	0.247	115.8	5.7	2.0	0.1158
Rukwa	0.011	0.034	0.091	0.194	0.256	117.0	5.4	2.2	0.1170
Kigoma	0.005	0.018	0.05	0.114	0.177	69.4	6.1	1.1	0.0694
Shinyanga	0.009	0.032	0.075	0.155	0.215	97.5	5.3	1.8	0.0975
Kagera	0.005	0.016	0.049	0.134	0.209	77.5	5.0	1.6	0.0775
Mwanza	0.007	0.022	0.053	0.111	0.165	69.2	5.6	1.2	0.0692
Mara	0.009	0.026	0.075	0.161	0.229	95.3	4.6	2.1	0.0953
Manyara	0.013	0.032	0.065	0.141	0.214	90.1	5.4	1.7	0.0901
Njombe	0.004	0.012	0.04	0.086	0.158	55.6	6.0	0.9	0.0556
Katavi	0.011	0.038	0.097	0.163	0.218	105.8	4.0	2.6	0.1058
Simiyu	0.007	0.024	0.074	0.155	0.237	96.5	5.6	1.7	0.0965
Geita	0.009	0.028	0.075	0.145	0.211	91.3	6.3	1.4	0.0913
Songwe	0.01	0.034	0.106	0.189	0.253	120.6	5.3	2.3	0.1206
Tanzania Zanzibar	0.002	0.005	0.014	0.035	0.072	25.4	5.5	0.5	0.0254
Kaskazini Unguja	0.001	0.004	0.016	0.037	0.082	26.9	4.8	0.6	0.0269
Kusini Unguja	0.003	0.008	0.028	0.061	0.079	36.4	4.0	0.9	0.0364
Mjini Magharibi	0.002	0.003	0.011	0.024	0.053	19.3	4.2	0.5	0.0193
Kaskazini Pemba	0.004	0.008	0.017	0.048	0.112	33.9	6.5	0.5	0.0339
Kusini Pemba	0.002	0.004	0.015	0.047	0.105	31.4	6.1	0.5	0.0314

Appendix 3.20: Adolescent Fertility Rate; Rural, Tanzania, 2022 PHC

Region			Total			Adolescent Fertility (Births per	TFR Women (15 - 49)	Percentage Contribution of Women 15 - 19 to	
		Age	Specific Fertility	y Rates					ASFR
	15	16	17	18	19	1000 Women)	,	TFR	15-19
Tanzania	0.011	0.031	0.079	0.155	0.218	95.3	5.3	1.8	0.095
Mainland Tanzania	0.011	0.032	0.081	0.158	0.222	97.2	5.3	1.8	0.097
Dodoma	0.019	0.055	0.125	0.205	0.256	127.7	5.7	2.2	0.128
Arusha	0.018	0.028	0.056	0.13	0.193	84.1	5.5	1.5	0.084
Kilimanjaro	0.005	0.013	0.031	0.078	0.128	46.7	3.7	1.3	0.047
Tanga	0.011	0.028	0.069	0.142	0.204	83.9	5.1	1.6	0.084
Morogoro	0.019	0.05	0.109	0.178	0.222	113.5	4.9	2.3	0.114
Pwani	0.01	0.022	0.047	0.108	0.141	64.4	3.9	1.7	0.064
Dar es Salaam	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lindi	0.01	0.03	0.074	0.129	0.176	82.1	3.6	2.3	0.082
Mtwara	0.014	0.041	0.093	0.16	0.207	100.9	4.3	2.3	0.101
Ruvuma	0.019	0.045	0.114	0.169	0.217	111.7	4.5	2.5	0.112
Iringa	0.005	0.018	0.047	0.11	0.17	62.1	4.4	1.4	0.062
Mbeya	0.012	0.032	0.08	0.135	0.177	87.3	4.1	2.1	0.087
Singida	0.009	0.029	0.077	0.159	0.231	95.5	6.1	1.6	0.095
Tabora	0.012	0.043	0.107	0.194	0.265	124.3	5.6	2.2	0.124
Rukwa	0.012	0.037	0.106	0.214	0.286	131.1	6.5	2.0	0.131
Kigoma	0.006	0.02	0.056	0.127	0.198	77.7	5.7	1.4	0.078
Shinyanga	0.011	0.039	0.089	0.182	0.254	113.5	5.7	2.0	0.114
Kagera	0.005	0.017	0.051	0.139	0.216	79.8	5.6	1.4	0.080
Mwanza	0.009	0.029	0.075	0.149	0.219	90.6	5.3	1.7	0.091
Mara	0.01	0.028	0.085	0.183	0.258	106.6	5.7	1.9	0.107
Manyara	0.014	0.035	0.068	0.148	0.222	94.3	6.2	1.5	0.094
Njombe	0.003	0.014	0.049	0.102	0.185	63.1	4.1	1.5	0.063
Katavi	0.013	0.044	0.112	0.179	0.235	116.8	5.9	2.0	0.117
Simiyu	0.007	0.026	0.08	0.165	0.259	103.1	6.7	1.5	0.103
Geita	0.01	0.031	0.089	0.168	0.247	105.3	5.8	1.8	0.105
Songwe	0.013	0.046	0.138	0.228	0.296	146.6	6.1	2.4	0.147
Tanzania Zanzibar	0.003	0.006	0.018	0.045	0.093	30.9	5.2	0.6	0.031
Kaskazini Unguja	0.001	0.004	0.017	0.037	0.089	27.7	5.0	0.6	0.028
Kusini Unguja	0.004	0.008	0.03	0.06	0.08	36.3	4.1	0.9	0.036
Mjini Magharibi	0.003	0.005	0.01	0.033	0.066	24.1	4.4	0.5	0.024
Kaskazini Pemba	0.004	0.008	0.019	0.052	0.116	35.3	6.6	0.5	0.035
Kusini Pemba	0.003	0.004	0.018	0.048	0.115	33.2	6.3	0.5	0.033

Appendix 3.21: Adolescent Fertility Rate; Urban, Tanzania, 2022 PHC

Region			Total		Adolescent	TFR Women (15 - 49)	Percentage Contribution of Women 15 - 19 to	ASFR	
		Age Spe	cific Fertility Rates	S	Fertility (Births per			ASTR	
	15	16	17	18	19	1000 Women)	(15 - 49)	TFR	15-19
Tanzania	0.005	0.013	0.031	0.068	0.106	45.4	3.8	1.2	0.045
Mainland Tanzania	0.005	0.014	0.032	0.071	0.109	46.8	3.8	1.2	0.047
Dodoma	0.007	0.023	0.044	0.090	0.128	59.2	3.8	1.5	0.059
Arusha	0.004	0.007	0.016	0.040	0.071	28.4	3.6	0.8	0.028
Kilimanjaro	0.004	0.005	0.020	0.042	0.082	30.9	3.3	0.9	0.031
Tanga	0.004	0.011	0.027	0.056	0.100	39.3	3.8	1.0	0.039
Morogoro	0.009	0.023	0.047	0.082	0.111	54.0	3.7	1.5	0.054
Pwani	0.004	0.011	0.029	0.071	0.097	42.5	3.6	1.2	0.043
Dar es Salaam	0.004	0.007	0.015	0.035	0.063	26.0	3.1	0.9	0.026
Lindi	0.017	0.017	0.043	0.079	0.125	54.8	3.5	1.6	0.055
Mtwara	0.005	0.010	0.044	0.080	0.124	52.5	3.5	1.5	0.053
Ruvuma	0.010	0.021	0.053	0.119	0.149	68.7	4.3	1.6	0.069
Iringa	0.004	0.005	0.023	0.053	0.084	34.8	3.5	1.0	0.035
Mbeya	0.005	0.011	0.034	0.069	0.098	43.7	3.5	1.2	0.044
Singida	0.005	0.017	0.024	0.071	0.129	48.0	4.2	1.1	0.048
Tabora	0.004	0.023	0.048	0.098	0.142	63.4	4.2	1.5	0.063
Rukwa	0.008	0.023	0.045	0.117	0.154	67.7	4.6	1.5	0.068
Kigoma	0.003	0.011	0.036	0.080	0.128	49.3	4.5	1.1	0.049
Shinyanga	0.007	0.020	0.051	0.113	0.159	72.1	4.4	1.6	0.072
Kagera	0.002	0.007	0.024	0.064	0.114	41.3	4.2	1.0	0.041
Mwanza	0.005	0.013	0.025	0.064	0.107	42.5	3.9	1.1	0.043
Mara	0.007	0.024	0.058	0.123	0.183	76.4	4.9	1.6	0.076
Manyara	0.003	0.014	0.039	0.082	0.148	56.8	4.4	1.3	0.057
Njombe	0.004	0.007	0.018	0.055	0.107	37.6	3.6	1.0	0.038
Katavi	0.004	0.019	0.055	0.118	0.181	76.0	5.2	1.5	0.076
Simiyu	0.006	0.018	0.054	0.121	0.169	74.0	5.1	1.4	0.074
Geita	0.008	0.024	0.056	0.116	0.172	75.1	5.0	1.5	0.075
Songwe	0.004	0.011	0.043	0.109	0.177	70.3	4.6	1.5	0.070
Tanzania Zanzibar	0.002	0.003	0.011	0.027	0.055	20.1	4.3	0.5	0.020
Kaskazini Unguja	0.005	0.000	0.012	0.027	0.035	23.1	4.0	0.6	0.020
Kusini Unguja	0.000	0.008	0.012	0.067	0.078	37.2	3.6	1.0	0.023
Mjini Magharibi	0.002	0.002	0.021	0.023	0.070	18.4	4.2	0.4	0.007
Kaskazini Pemba	0.002	0.002	0.012	0.023	0.089	25.8	5.6	0.4	0.010
Kusini Pemba	0.004	0.005	0.009	0.031	0.009	23.9	5.3	0.5	0.020
	0.000	0.005	0.005	0.041	0.075	20.9	0.0	0.5	0.024

Appendix 4: Measures of Nuptiality Estimates

Computation of Net Nuptiality Table

In order to study the marriage patterns, a number of statistical measures like crude marriage rates, age-sex specific marriage rates and similar other rates have been used by demographers, but the most refined device known is the Nuptiality Table. The term nuptiality is associated with the frequency of marriages and a Nuptiality Table provides the expected proportions of single persons who get married at different ages and their average expected years to marriage from each age.

To understand concept of the Nuptiality Table, it is necessary to provide first a description of the nature of a simple Life Table and the basic requirements for its construction

A Life Table is a statistical model which describes the life history of a group of persons born at one time, as it passes through different years of life, experiencing specific mortality at different ages until every one of them dies. This table is generated through the application of a given set of age-specific mortality rates on a hypothetical cohort of persons assumed to have been born at one time and provides the value of such functions as the probability of death at each age and the expected average life (or the years to death) beyond a specific age. A Nuptiality Table is also modelled after the Life Table, but it describes the effect of age-specific marriage rates on a hypothetical cohort of single persons as it passes through different ages. This table therefore gives proportions of cohort of single males or females who would be getting married at various ages assuming that the marriage rates used in constructing the table would continue to prevail. Such table when constructed without accounting for the mortality effect is called Gross Nuptiality Table. If, however, the mortality effect is also considered in addition to attrition due to marriages, the table so constructed is called Net Nuptiality Table.

To arrive at estimates of marriage probabilities at each age, the first step requires to estimate the number of marriages. This has been done by using the number of single survivors and the number of total survivors (married and unmarried inclusive), in the following way:

 l_x = number of survivors at age x.

 l'_x = number of single survivors at age x.

 l_x - l'_x = number of married survivors at age x.

 q_x = the probability of death between the age x and (x + 1)

 $P_X = 1 - q_x$ = the probability of surviving between age x and (x+1)

Since $(l_x - l'_x)$ is the number of married persons who are survivors of those already married at age (x-1) and the singles who got married between the age (x-1) and x, the estimate of the original group of which $(l_x - l'_x)$ are the survivors, is given by $\frac{l_x - l_x}{P_{x-1}}$.

The estimated number of marriages between the ages (x-1) and x is given by $\frac{l_x - l_x}{P_{x-1}} - (l_{x-1} - l_{x-1}) = M_{x-1}$

Similarly, M_x the number of marriages between x and (x+l) is given by

$$\frac{l_{x+1-l'_{x+1}}}{P_x} - (l_{x-l'_x}) = M_x$$

The marriage probability between age x and (x+1) is represented in a Nuptiality Table by the symbol n_x which is given by the following equation:

$$n_{x} = \frac{M_{x}}{l_{x}} = \frac{\frac{l_{x+1} - l_{x+1}}{P_{x}} - (l_{x-l_{x}})}{l_{x}}$$

In the Nuptiality Table this measure forms the first column and is given as 1000 n_x .

In a nuptiality table, 1000 n_x represents the number of people (usually out of a cohort of 1,000) who are expected to remain single (or in a specific marital status) during the given age interval (x, x+n)

- i. n_x : This value represents the proportion or probability that individuals in a cohort will remain single (or in a specified marital status) over the age interval (x, x+1).
- ii. **By multiplying by 1,000,** 1000nx gives you the number of people, out of an initial cohort of 1,000 individuals, expected to stay single (or remain in the marital status under consideration) within that age range.

Nuptiality tables help demographers and social scientists understand trends in marriage and the likelihood of remaining single or entering marriage across age groups.

The second column in the table gives probability of death, between age x and (x+1) and is symbolized as q_x and in the nuptiality table is given as 1000 qx.

The third column gives number of single survivors at age x or l'_x .

- i. Out of the total population the ratio of single persons is computed for each age-group.
- ii. Ratios for single years are then interpolated out of them
- iii. These ratios are then multiplied with the number of survivors at each single age (l_x) as given in the Complete Life Table, giving the estimated number of single survivors to the respective ages (l'_x) in the Nuptiality Table

The fourth column gives deaths at age x while single which is represented by the symbol d'_x in Nuptiality Table and is given by the following formula.

$$d'_x = q_x \left(1 - \frac{n_x}{2}\right) l_x$$

Column (5) in the table gives estimates of first marriages out of 100,000 born alive which is the radix of Nuptiality Table. These are represented by symbol v'_x vlx which is given by the formula:

 $v'_x = l'_x - d'_x - l'_{x+1}$

The next column N'x gives first marriages at each age x and at later ages and is given by

Column (7) provides percentage of N'x out of corresponding single survivors l'_x .

Column (8) in the table gives stationary population at different ages. The corresponding symbol for this column is L'_x which stands for the person-years lived by single persons between ages x and (x+1). This is given by the following formula:

$$L'_{x} = \frac{1}{2} \left(l'_{x+l_{x+1}} \right) + \frac{1}{4} \left(d'_{x+1} + v'_{x+1} - d'_{x-1} - v'_{x-1} \right)$$

Column (9) gives the values of T'_x which represents the number of person years-lived by single persons at age x and at all later ages and is given by

$\sum L_x$

The last column (10) gives the estimates of expected years of single life remaining at start of age x. The column provides expected average years to marriage considering the effect of death. The symbol corresponding to this estimate is e_{i_x} which is given by the formula

$$^{\circ} \mathbf{e}_{\prime_{x}} = \frac{T_{x}}{l_{\prime_{x}}}$$

In the nuptiality table age 15 is considered as minimum for males as well as females keeping in view the distribution of population by marital status. On the same basis the maximum age for males and females has been taken as 50 years and above.

$$\mathsf{ASMR} = \frac{nM_x}{nP_x} * 1000$$

Where

 nM_x = number of marriages in a year between ages x and x + n

 nP_x = number of persons in the age group (x, x + n)

Crude Marriage Rate (CMR)

The CMR is calculated by the following formula:

CMR=
$$\frac{M}{P}$$
*1000 Where M is number of marriages persons and P is the total population

The General Marriage Rate (GMR) is the measure of the marriages per one thousand of the marriageable age population.

$$GMR = \frac{M}{P_{15+}} * 1000$$

Where M is number of married persons and P_{15+} is total population at age 15 and above

The Mean Age at First Birth is defined as the average length of single life expressed in years among those who experienced childbearing before age 50.

Step 1: Calculation of the person years lived in a childless state, denoted by A where A= 15 + $\sum_{x=15-19}^{45-49} S_x * 5$ Where S_x = Proportional childless in the age group x

Step 2: Estimation of the proportion of the remaining childless at age 50, denoted by B where

$$\mathsf{B} = \frac{\left(S_{45-49} + S_{50-54}\right)}{2}$$

If the proportion women childless in age group 50-54 is not available, then $B=S_{45-49}$

Step 3: Estimation of the proportional childless by age 50, denoted by C, i.e. C=1-B

Step 4: Calculation of the number of person-years lived by proportion childless, denoted by D, i.e. D=50*B

Step 5: Calculation of Mean age at first birth= $\frac{(A-D)}{C}$

Singulate Mean Age at Marriage (SMAM) is defined as the average length of single life expressed in years among those who marry before age 50. The Singulate Mean Age at Marriage is calculated from data on the proportion never married by age and sex by using the following formula:

Step 1: Calculation of the person years lived in a single state, denoted by A

A= 15 +
$$\sum_{x=15-19}^{45-49} S_x * 5$$
 Where S_x = Proportion single in the age group x

Step 2: Estimation of the proportion of the remaining single at age 50, denoted by B

$$\mathsf{B} = \frac{\left(S_{45-49} + S_{50-54}\right)}{2}$$

If the proportion single in age group 50-54 is not available, then $B=S_{45-49}$

Step 3: Estimation of the proportion ever married by age 50, denoted by C i.e. C=1-B

Step 4: Calculation of the number of person-years lived by proportion not married, denoted by D, i.e. D=50*B Step 5: Calculation of SMAM= $\frac{(A-D)}{C}$

Age Specific Fertility Rate is calculated as number of births in a year to mothers of a specific age per woman (or per 1000 women) of the same age at midyear. ASFR is usually calculated for women in each 5-year age group for ages 15-49 years.

ASFRa = (Ba/Ea) x1000

Where:

Ba = number of births to women in age group a in a given year or reference period; and

Ea =number of person-years of exposure in age group a during the specified reference period

Crude Birth Rate (CBR): The CBR is defined as the number of births in a year divided by the mid-year population, multiplied by 1000. While all other indices are derived by using births of women in childbearing age, the indicator on CBR includes all births in the population including from women outside the reproductive age group 15 – 49.

$$\frac{B}{P}$$
 x1000

Where **B** is births in a year, **P** is the total population or mid-year population. The CBR is a general indicator of fertility in a population or country or a particular area.

Child Woman Ratio (CWR) is the number of children under five years of age per 1,000 women in the population (15-49 age). $CWR = -\frac{C}{W} * 1000$

General Fertility Rate (GFR) is defined as the number of live births per 1,000 women aged 15-49 years in a population per year represented as:

$$\frac{B}{P_{f15-49}} x \ 1000$$

Where **B** is the number of births in a year and P_{f15-49} is the number of women aged 15 to 49 years.

Gross Reproduction Rate (GRR) is the measure analogous to the total fertility rate, but it refers only to female births. Thus, it is derived as the same manner of TFR but uses a set of Age-Specific Fertility Rates calculated based on female births only.

The GRR is exactly like TFR, except that it counts only daughters and literally measures "reproduction" – a woman reproducing herself in the next generation by having a daughter. The GRR is estimated by multiplying the TFR by the percentage of female at birth. The GRR, like TFR, assumes that the hypothetical cohort of women pass from birth through their reproductive life without experiencing mortality. This assumption is satisfactory when one wants to compare levels of fertility and/or gross reproduction across populations and over time. But, for a more realistic assessment of the reproductive potential of a population, considering mortality, one needs to calculate the Net Reproduction Rate (NRR). The NRR is obtained by multiplying the ASFR by the Survivorship rate of corresponding age 12 group from the women life table and summing up all this values. When NRR equals 1, then each generation of women is exactly reproducing itself. When it is larger than 1, the next generation will have more women. When it is smaller than 1, the next generation will have less women.

GRR = TFR x Proportion of Births that are female

Total Fertility Rate (TFR)

TFR is the average number of children that would be born to a woman by the time she ended her childbearing if she were to pass through all her childbearing years conforming to the age-specific fertility rates of a given year. TFR is the sum of the age-specific fertility rate (ASFR) for women aged 15-49, in 5-year age intervals.

TFR is calculated as 5*∑ASFRs where there are 5-year age groups or ∑ASFRs per singe year 15 to 49

Parity Progression Ratio (PPR) is the probability of having another child given that the mother has reached certain parity. PPRs are usually represented as a0, a1, a2 and so on. The term a0 is a measure of infertility. Women progressing to higher parities usually have high fertility rates. Zero parity women are those with no live births and single parity refers to those women who have one child and so on. PPR can be calculated by using the following formula:

 $a_x = \frac{Women with at least x + 1 children ever born}{W}$

Women with at least x children ever born

